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About Model Objects

In this section...

“What Are Model Objects?” on page 1-2

“Control System Modeling with Model Objects” on page 1-3

What Are Model Objects?

Model Objects Represent Linear Systems
In Control System Toolbox™ software, you represent linear systems as model
objects. Model objects are specialized data containers that encapsulate model
data and other attributes in a structured way. Model objects allow you to
manipulate linear systems as single entities rather than keeping track of
multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or
multiple-input, multiple-output (MIMO) systems. You can represent both
continuous- and discrete-time linear systems.

The main families of model objects are:

• Numeric Linear Time Invariant (LTI) Models — Represent linear
systems with fixed numerical coefficients.

• Control Design Blocks — Represent tunable parameters or tunable
linear models with certain predefined structures.

• Generalized LTI Models — Combine numeric and tunable coefficients
to support tasks such as parameter studies or compensator tuning.
Generalized LTI models arise from combining numeric LTI models with
Control Design Blocks.

For more information about the families of model objects, see “Model Object
Families” on page 1-6.
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About Model Data
The data encapsulated in your model object depends on the model type you
use. For example:

• Transfer functions store the numerator and denominator coefficients

• State-space models store the A, B, C, and D matrices that describe the
dynamics of the system

• PID controller models store the proportional, integral, and derivative gains

Other model attributes stored as model data include time units, names for the
model inputs or outputs, and time delays. For more information about setting
and retrieving model attributes, see “Model Properties” on page 3-2.

Note All model objects are MATLAB® objects, but working with them does
not require a background in object-oriented programming. To learn more
about objects and object syntax, see “MATLAB Classes” in the MATLAB
documentation.

Control System Modeling with Model Objects
Model objects can represent individual components of a control architecture,
such as the plant, actuators, sensors, or controllers. You can connect model
objects to build aggregate models of block diagrams that represent the
combined response of multiple elements.

For example, the following control system contains a prefilter F, a plant G,
and a controller C, arranged in a single-loop configuration. The model also
includes a representation of sensor dynamics, S.

�
�

�������� �
�

	���


���
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You can represent each of the components as a model object. You do not
need to use the same type of model object for each component. For example,
represent the plant G as a zero-pole-gain (zpk) model with a double pole at s =
–1; C as a PID controller, and F and S as transfer functions:

G = zpk([],[-1,-1],1);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]);
F = tf(1,[1 1]);

You can then combine these elements build models that represent your
control system or the control system as a whole. For example, create the
open-loop response SGC:

open_loop = S*G*C;

To build a model of the unfiltered closed-loop response, use the feedback
command:

T = feedback(G*C,S);

To model the entire closed-loop system response from r to y, combine T with
the filter transfer function:

Try = T*F;

The results open_loop, T, and Try are also linear model objects. You can
operate on them with Control System Toolbox control design and analysis
commands. For example, plot the step response of the entire system:

step(Try)
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When you combine Numeric LTI models, the resulting Numeric LTI models
represent the aggregate model. The resulting models do not retain the
original data from the combined components. For example, T does not
separately keep track of the dynamics of the components G, C, and S that are
combined to create T.

To learn more about building control architectures by connecting model
objects, see “Arithmetic Operations on LTI Models” on page 5-15 and “Model
Interconnection Functions” on page 5-20.
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Model Object Families

In this section...

“Dynamic vs. Static Models” on page 1-6

“Numeric Linear Time Invariant (LTI) Models” on page 1-7

“Control Design Blocks” on page 1-7

“Generalized Matrices” on page 1-8

“Generalized LTI Models” on page 1-9

Dynamic vs. Static Models
Control System Toolbox model objects fall into one of the following two
classes: Dynamic System Models and Static Models.

Dynamic System Models
Dynamic System Models represent systems that have internal dynamics or
memory of past states (such as integrators). This family includes:

• All Numeric LTI models — Basic numeric representation of linear systems
or components of linear systems

• Control Design Blocks that have dynamics, such as ltiblock.tf,
ltiblock.ss, or ltiblock.pid

• All Generalized LTI models — Represent systems having both fixed and
tunable (or parametric) coefficients

Most analysis commands work on any type of Dynamic System model object.
For Control Design Blocks and Generalized LTI models, analysis commands
use the current value of the tunable parameters.

Static Models
Static Models represent static input/output relationships and generalize the
notions of matrix and numeric array to parametric arrays. You can use static
models to create parametric expressions and to construct Generalized LTI
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models whose coefficients are parametric expressions. The Static Models
family includes:

• Tunable parameters (realp objects)

• Generalized matrices (genmat objects)

For more information about using these objects to create parametric models,
see “Models with Tunable Coefficients” on page 1-19,

Numeric Linear Time Invariant (LTI) Models
Numeric LTI models are the basic numeric representation of linear systems
or components of linear systems. Use numeric LTI models for modeling
dynamic components, such as transfer functions or state-space models, whose
coefficients are fixed, numeric values. You can use numeric LTI models for
linear analysis or control design tasks. For more information about numeric
LTI models and their applications, see “Models with Fixed Coefficients” on
page 1-10.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form

zpk Transfer function model in zero-pole-gain
(factorized) form

ss State-space model

frd Frequency response data model

pid Parallel-form PID controller

pidstd Standard-form PID controller

Control Design Blocks
Control Design Blocks are building blocks for constructing tunable models
of control systems. Combine Control Design Blocks with Numeric LTI
models to create Generalized LTI models that include both fixed and tunable
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components. For more information about using Control Design Blocks, see
“Models with Tunable Coefficients” on page 1-19.

Control Design Blocks include tunable parameter objects as well as tunable
linear models with predefined structure. The following table summarizes the
available types of Control Design Blocks.

Family Model Type Description

ltiblock.gain Tunable static gain
block

ltiblock.tf SISO fixed-order
transfer function with
tunable coefficients

ltiblock.ss Fixed-order state-space
model with tunable
coefficients

Tunable Linear
Components

ltiblock.pid One-degree-of-freedom
PID controller with
tunable coefficients

Tunable Parameter realp Static control design
block representing a
tunable real parameter

Generalized Matrices
Generalized Matrices extend the notion of numeric matrices to matrices that
include parametric or tunable values. Create generalized matrices by building
rational expressions involving realp parameters. You can use generalized
matrices as inputs to tf or ss to create tunable linear models with structures
other than the predefined structures of the Control Design Blocks. Use such
models for parameter studies or some compensator tuning tasks.

Model Type Description

genmat Generalized matrix that includes parametric or
tunable entries
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For more information about generalized matrices and their applications, see
“Models with Tunable Coefficients” on page 1-19.

Generalized LTI Models
Generalized LTI models represent systems having both fixed and tunable
(or parametric) coefficients. Generalized LTI models arise from combining
numeric LTI models with Control Design Blocks.

For more information about Generalized LTI models and their applications,
see “Models with Tunable Coefficients” on page 1-19.

Model Type Description

genss Generalized LTI model arising from combination
of Numeric LTI models (except frd models) with
Control Design Blocks

genfrd Generalized LTI model arising from combination
frd models with Control Design Blocks

1-9
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Models with Fixed Coefficients

In this section...

“Numeric LTI Models” on page 1-10

“Transfer Functions” on page 1-11

“State-Space Models” on page 1-12

“Frequency Response Data (FRD) Models” on page 1-14

“PID Controllers” on page 1-16

Numeric LTI Models
Numeric LTI models are the basic representation of linear systems or
components of linear systems whose coefficients are fixed numeric values.

Applications of Numeric LTI Models
You can use Numeric LTI models to represent block diagram components such
as plant or sensor dynamics. By connecting Numeric LTI models together, you
can derive Numeric LTI models of block diagrams. Use Numeric LTI models
for most modeling, analysis, and control design tasks, including:

• Analyzing linear system dynamics using analysis commands such as bode,
step, or impulse.

• Designing controllers for linear systems using “SISO Design Tool” or the
PID Tuner GUI.

• Designing controllers using control design commands such as pidtune,
rlocus, or lqr/lqg.

Types of Numeric LTI Models
Control System Toolbox includes the following types of numeric LTI models:

• “Transfer Functions” on page 1-11

• “State-Space Models” on page 1-12

• “Frequency Response Data (FRD) Models” on page 1-14
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• “PID Controllers” on page 1-16

Transfer Functions

• “Transfer Function Representations” on page 1-11

• “Commands for Creating Transfer Functions” on page 1-12

Transfer Function Representations
Control System Toolbox software supports transfer functions that are
continuous-time or discrete-time, and SISO or MIMO. You can also have time
delays in your transfer function representation.

A SISO transfer function is expressed as the ratio:

G s
N s

D s
( ) =

( )
( )

,

of polynomials N(s) and D(s), called the numerator and denominator
polynomials, respectively.

You can represent linear systems as transfer functions in polynomial or
factorized (zero-pole-gain) form. For example, the polynomial-form transfer
function:

G s
s s

s s
    

 

2

2
3 4

5 6

can be rewritten in factorized form as:

G s
s s

s s
  

   
   

1 4

2 3
.

The tf model object represents transfer functions in polynomial form. The
zpk model object represents transfer functions in factorized form.

MIMO transfer functions are arrays of SISO transfer functions. For example:
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G s

s
s
s
s

  























3
4
1
2

is a one-input, two output transfer function.

Commands for Creating Transfer Functions
Use the commands described in the following table to create transfer
functions.

Command Description

tf Create tf objects representing continuous-time or
discrete-time transfer functions in polynomial form.

zpk Create zpk objects representing continuous-time or
discrete-time transfer functions in zero-pole-gain
(factorized) form.

filt Create tf objects representing discrete-time
transfer functions using digital signal processing
(DSP) convention.

For examples of using these commands, see Chapter 2, “Model Creation” and
the reference pages for each command.

State-Space Models

• “State-Space Model Representations” on page 1-13

• “Explicit State-Space Models” on page 1-13

• “Descriptor (Implicit) State-Space Models” on page 1-14

• “Commands for Creating State-Space Models” on page 1-14
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State-Space Model Representations
State-space models rely on linear differential equations or difference
equations to describe system dynamics. Control System Toolbox software
supports SISO or MIMO state-space models in continuous or discrete time.
State-space models can include time delays. You can represent state-space
models in either explicit or descriptor (implicit) form.

State-space models can result from:

• Linearizing a set of ordinary differential equations that represent a
physical model of the system.

• State-space model identification using System Identification Toolbox™
software.

• State-space realization of transfer functions. (See “Converting Between
Model Types” on page 1-24 for more information.)

Use ss model objects to represent state-space models. For examples of
creating state-space models, see Chapter 2, “Model Creation”.

Explicit State-Space Models
Explicit continuous-time state-space models have the following form:

dx
dt

Ax Bu

y Cx Du

= +

= +

where x is the state vector. u is the input vector, and y is the output vector. A,
B, C, and D are the state-space matrices that express the system dynamics.

A discrete-time explicit state-space model takes the following form:

x n Ax n Bu n

y n Cx n Du n

+[ ] = [ ] + [ ]
[ ] = [ ] + [ ]
1

where the vectors x[n], u[n], and y[n] are the state, input, and output vectors
for the nth sample.
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Descriptor (Implicit) State-Space Models
A descriptor state-space model is a generalized form of state-space model. In
continuous time, a descriptor state-space model takes the following form:

E
dx
dt

Ax Bu

y Cx Du

 

 

where x is the state vector. u is the input vector, and y is the output vector. A,
B, C, D, and E are the state-space matrices.

Commands for Creating State-Space Models
Use the commands described in the following table to create state-space
models.

Command Description

ss Create explicit state-space model.

dss Create descriptor (implicit) state-space model.

delayss Create state-space models with specified time
delays.

For examples of using these commands, see Chapter 2, “Model Creation” and
the reference pages for each command.

Frequency Response Data (FRD) Models

• “Frequency Response Data” on page 1-14

• “Commands for Creating FRD Models” on page 1-15

Frequency Response Data
In the Control System Toolbox software, you can use frd models to store,
manipulate, and analyze frequency response data. An frd model stores a
vector of frequency points with the corresponding complex frequency response
data you obtain either through simulations or experimentally.
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For example, suppose you measure frequency response data for the SISO
system you want to model. You can measure such data by driving the system
with a sine wave at a set of frequencies ω1, ω2, ,...,ωn, as shown:

��������� ����� �����

At steady state, the measured response yi(t) to the driving signal at each
frequency ωi takes the following form:

y t a t b i ni i( ) = +( ) =sin , , , . 1 

The measurement yields the complex frequency response G at each input
frequency:

G j ae i ni
jb   , , , .1 

You can do most frequency-domain analysis tasks on frd models, but you
cannot perform time-domain simulations with them. For information on
frequency response analysis of linear systems, see Chapter 8 of [1].

Commands for Creating FRD Models
Use the following commands to create FRD models.

Command Description

frd Create frd objects from frequency response data.

frestimate Create frd objects by estimating the frequency
response of a Simulink® model. This approach
requires Simulink® Control Design™ software. See
“Frequency Response Estimation” in the Simulink
Control Design User’s Guide for more information.

For examples creating FRD models, see Chapter 2, “Model Creation” and
the frd reference page.
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PID Controllers

• “Continuous-Time PID Controller Representations” on page 1-16

• “Discrete-Time PID Controllers” on page 1-17

Continuous-Time PID Controller Representations
You can represent continuous-time Proportional-Integral-Derivative (PID)
controllers in either parallel or standard form. The two forms differ in the
parameters used to express the proportional, integral, and derivative actions
and the filter on the derivative term, as shown in the following table.

Form Formula

Parallel

C K
K
s

K s
T sp

i d

f
  

1
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T s

T s
T
N

s
p

i

d

d
  



















1
1

1
,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant
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Use a controller form that is convenient for your application. For example,
if you want to express the integrator and derivative actions in terms of time
constants, use Standard form.

For examples of creating continuous-time PID Controllers, see Chapter 2,
“Model Creation” and the pid and pidstd reference pages.

Discrete-Time PID Controllers
Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel

C K K IF z
K

T DF zp i
d

f
    

  
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T

IF z
T

T
N

DF z
p

i

d

d
    

  

















1
1

,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant
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IF(z) and DF(z) are the discrete integrator formulas for the integrator and
derivative filter, respectively. Use the IFormula and DFormula properties of
the pid or pidstd model objects to set the IF(z) and DF(z) formulas. The next
table shows available formulas for IF(z) and DF(z). Ts is the sample time.

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default)
T

z
s
1

BackwardEuler

T z
z

s
1

Trapezoidal

T z
z

s
2

1
1




If you do not specify a value for IFormula, DFormula, or both, ForwardEuler
is used by default.

For examples of creating discrete-time PID Controllers, see Chapter 2, “Model
Creation” and the pid and pidstd reference pages.
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Models with Tunable Coefficients

In this section...

“Generalized LTI Models” on page 1-19

“Modeling Tunable Components” on page 1-19

“Modeling Control Systems with Tunable Components” on page 1-20

“Internal Structure of Generalized Models” on page 1-21

Generalized LTI Models
Generalized LTI models represent systems having both fixed and tunable
(or parametric) coefficients.

You can use Generalized LTI models to:

• Model a tunable (or parametric) component of a control system, such as a
tunable low-pass filter.

• Model a control system that contains both:

- Fixed components, such as plant dynamics and sensor dynamics

- Tunable components, such as filters and compensators

You can use Generalized LTI models for parameter studies. For an example,
see “Sample a Tunable (Parametric) Model for Parameter Studies” on page
2-66.

If you have Robust Control Toolbox™ software, you can use Generalized LTI
models for tuning fixed control structures using hinfstruct. See “H-Infinity
Tuning of Fixed Control Structures” in the Robust Control Toolbox Getting
Started Guide.

Modeling Tunable Components
Control System Toolbox includes tunable components with predefined
structure called “Control Design Blocks” on page 1-7. To create tunable
components with a specific custom structure that is not covered by the Control
Design Blocks:
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1 Use the tunable real parameter realp or the generalized matrix genmat to
represent the tunable coefficients of your component.

2 Use the resulting realp or genmat objects as inputs to tf or ss to model
the component. The result is a generalized state-space (genss) model of
the component.

For examples of creating such custom tunable components, see:

• “Tunable Low-Pass Filter” on page 2-52

• “Tunable Second-Order Filter” on page 2-53

• “State-Space Model With Both Fixed and Tunable Parameters” on page 2-54

Modeling Control Systems with Tunable Components
To construct a Generalized LTI model representing a control system with
both fixed and tunable components:

1 Model the nontunable components of your system using Numeric LTI
models.

2 Model each tunable component using Control Design Blocks or expressions
involving such blocks. See “Modeling Tunable Components” on page 1-19.

3 Use model interconnection commands such as series, parallel or
connect, or the arithmetic operators +, -, *, /, \, and ^, to combine all the
components of your system.

The resulting model is:

• A genss model, if none of the nontunable components is a frequency
response data model (for example, frd)

• A genfrd model, if the nontunable component is a frd model

For an example of constructing a genss model of a control system with
both fixed and tunable components, see “Control System With Tunable
Components” on page 2-55.
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Internal Structure of Generalized Models
A Generalized model separately stores the numeric and parametric portions
of the model by structuring the model in Standard Form, as shown in the
following illustration.
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w and z represent the inputs and outputs of the Generalized model.

H represents all portions of the Generalized model that have fixed
(non-parametric) coefficients. H is:

• A state-space (ss) model, for genss models

• A frequency response data (frd) model, for genfrd models

• A matrix, for genmat models

B represents the parametric components of the Generalized model, which are
the Control Design Blocks B1, . . . , BN. The Blocks property of the Generalized
model stores a list of the names of these blocks. If the Generalized model has
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blocks that occur multiple times in B1, . . . , BN, these are only listed once in
the Blocks property.

To access the internal representation of a Generalized model, including H and
B, use the getLFTModel command.

This Standard Form can represent any control structure. To understand why,
consider the control structure as an aggregation of fixed-coefficient elements
interacting with the parametric elements:
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To rewrite this in Standard Form, define

u u u

y y y
N

N

: , ,

: , , ,

= [ ]
= [ ]

1

1





and group the tunable control elements B1, . . . , BN into the block-diagonal
configuration C. P includes all the fixed components of the control
architecture—actuators, sensors, and other nontunable elements—and their
interconnections.
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Using Linear System Model Objects
After you represent your dynamic system as a model object, you can:

• Attach additional information to the model using model attributes
(properties). See “Model Properties” on page 3-2.

• Manipulate the model using arithmetic and model interconnection
operations. See Chapter 5, “Operations on Models”.

• Analyze the model response using commands such as bode and step. See
Chapter 6, “Model Analysis Tools”.

• Perform parameter studies using model arrays. See “Model Arrays” on
page 2-58.

• Design compensators. You can:

- Design compensators for systems specified as numeric LTI models.
Available compensator design techniques include PID tuning, root locus
analysis, pole placement, LQG optimal control, and frequency domain
loop-shaping. See “Designing Compensators”.

- Manually tune many control architectures using the Chapter 13, “SISO
Design Tool”.

- Use hinfstruct to automatically tune a control system that you
represent as a genss model with tunable blocks (requires Robust Control
Toolbox software). See “H-Infinity Tuning of Fixed Control Structures”
in the Robust Control Toolbox Getting Started Guide.
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Converting Between Model Types

In this section...

“Explicit Conversion” on page 1-24

“Automatic Conversion” on page 1-24

“Caution About Model Conversions” on page 1-25

Explicit Conversion
You can convert from one type of model to another using the model-creation
command for the target model type (for example, ss, tf, pid, or genss). In
general, you can convert from any model type to any other. However, there
are a few limitations. For example:

• You cannot convert from frd to analytic model types such as ss, tf, or
zpk (unless you perform system identification with System Identification
Toolbox software)

• You cannot convert ss models with internal delays to tf or zpk

You can convert between Numeric LTI models and Generalized LTI models:

• Converting a Generalized LTI model to a Numeric LTI model evaluates any
Control Design Blocks at their current (nominal) value.

• Converting a Numeric LTI model to a Generalized LTI model creates a
Generalized LTI model with an empty Blocks property.

For information about converting to a particular model type, see the reference
page for that model type.

Automatic Conversion
Some algorithms operate only on one type of model object . For example, the
algorithm for zero-order-hold discretization with c2d can only be performed
on state-space models. Similarly, commands such as tfdata expect one
particular type of model (tf). For convenience, such commands automatically
convert input models to the appropriate or required model type. For example,
in
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sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata first converts the state-space model sys to an equivalent transfer
function in order to return numerator and denominator data.

Conversions to state-space models are not uniquely defined. For this reason,
automatic conversions to state space are disabled when the result depends
on the choice of state coordinates, for example, in commands like initial or
kalman.

Caution About Model Conversions
When manipulating or converting LTI models, keep in mind that:

• The three LTI model types TF, ZPK, and SS, are not equally well-suited
for numerical computations. In particular, the accuracy of computations
using high-order transfer functions is often poor. Therefore, it is often
preferable to work with the state-space representation. In addition, it is
often beneficial to balance and scale state-space models. You get this type
of balancing automatically when you convert any TF or ZPK model to state
space using ss.

• Conversions to the transfer function representation using tf may incur a
loss of accuracy. As a result, the transfer function poles may noticeably
differ from the poles of the original zero-pole-gain or state-space model.

• Conversions to state space are not uniquely defined in the SISO case, nor
are they guaranteed to produce a minimal realization in the MIMO case.
For a given state-space model sys,

ss(tf(sys))

may return a model with different state-space matrices, or even a different
number of states in the MIMO case. Therefore, if possible, it is best to avoid
converting back and forth between state-space and other model types.
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Simulink Block for LTI Systems
You can incorporate model objects into Simulink diagrams using the LTI
System block shown below.
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The LTI System block can be accessed either by typing

ltiblock

at the MATLAB prompt or by selecting Control System Toolbox from the
Blocksets and Toolboxes section of the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the
figure above. In the editable text box labeled LTI system variable, enter
either the variable name of an LTI object located in the MATLAB workspace
(for example, sys) or a MATLAB expression that evaluates to an LTI object
(for example, tf(1,[1 1])). The LTI System block accepts both continuous
and discrete LTI objects in either transfer function, zero-pole-gain, or
state-space form. All types of delays are supported in the LTI block. Simulink
converts the model to its state-space equivalent prior to initializing the
simulation.
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Use the editable text box labeled Initial states to enter an initial state vector
for state-space models. The concept of "initial state" is not well-defined for
transfer functions or zero-pole-gain models, as it depends on the choice of
state coordinates used by the realization algorithm. As a result, you cannot
enter nonzero initial states when you supply TF or ZPK models to LTI blocks
in a Simulink diagram.
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2 Model Creation

Single-Input Single-Output (SISO) Model Creation
How to create continuous-time, single-input single-output (SISO) models.

In this section...

“Transfer Function Model Using Numerator and Denominator Coefficients”
on page 2-2

“Transfer Function Model Using Zeros, Poles, and Gain” on page 2-3

“State-Space Model” on page 2-4

“Frequency-Response Model” on page 2-5

“Proportional-Integral-Derivative (PID) Controller” on page 2-6

Transfer Function Model Using Numerator and
Denominator Coefficients
This example shows how to create continuous-time, single-input single-output
(SISO) transfer functions from their numerator and denominator coefficients
using tf.

Create the transfer function G s
s

s s
( ) =

+ +2 3 2
:

num = [1 0];
den = [1 3 2];
G = tf(num,den);

num and den are the numerator and denominator polynomial coefficients
in descending powers of s. For example, den = [1 3 2] represents the
denominator polynomial s2 + 3s + 2.

G is a tf model object, which is a data container for representing transfer
functions in polynomial form.
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Single-Input Single-Output (SISO) Model Creation

Tip Alternatively, you can specify the transfer function G(s) as an expression
in s:

1 Create a transfer function model for the variable s.

s = tf('s');

2 Specify G(s) as a ratio of polynomials in s.

G = s/(s^2 + 3*s + 2);

More About

• “About Model Objects” on page 1-2

• “Transfer Functions” on page 1-11

Transfer Function Model Using Zeros, Poles, and Gain
This example shows how to create single-input, single-output (SISO) transfer
functions in factored form using zpk.

Create the factored transfer function G s
s

s i s i s
  

       
5

1 1 2
:

Z = [0];
P = [-1-1i -1+1i -2];
K = 5;
G = zpk(Z,P,K);

Z and P are the zeros and poles (the roots of the numerator and denominator,
respectively). K is the gain of the factored form. For example, G(s) has a real
pole at s = –2 and a pair of complex poles at s = –1 ± i. The vector P = [-1-1i
-1+1i -2] specifies these pole locations.

G is a zpk model object, which is a data container for representing transfer
functions in zero-pole-gain (factorized) form.
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More About

• “About Model Objects” on page 1-2

• “Transfer Functions” on page 1-11

State-Space Model
This example shows how to create a continuous-time single-input,
single-output (SISO) state-space model from state-space matrices using ss.

Create a model of an electric motor where the state-space equations are:

dx
dt

Ax Bu

y Cx Du

= +

= +

where the state variables are the angular position θ and angular velocity
dθ/dt:

x d
dt

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥


 ,

u is the electric current, the output y is the angular velocity, and the
state-space matrices are:

A B C D
 








 








      0 1

5 2
0
3

0 1 0, , , .

To create this model, enter:

A = [0 1;-5 -2];
B = [0;3];
C = [0 1];
D = 0;
sys = ss(A,B,C,D);
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sys is an ss model object, which is a data container for representing
state-space models.

Tip To represent a system of the form:

E
dx
dt

Ax Bu

y Cx Du

 

 

use dss. This command creates a ss model with a nonempty E matrix,
also called a descriptor state-space model. See “Multi-Input Multi-Output
Descriptor State-Space Model” on page 2-17 for an example.

More About

• “About Model Objects” on page 1-2

• “State-Space Models” on page 1-12

Frequency-Response Model
This example shows how to create a single-input, single-output (SISO)
frequency-response model using frd.

A frequency-response model stores a vector of frequency points with
corresponding complex frequency response data you obtain either through
simulations or experimentally. Thus, if you measure the frequency response
of your system at a set of test frequencies, you can use the data to create a
frequency response model:

1 Load the frequency response data in AnalyzerData.mat.

load AnalyzerData

This command loads the data into the MATLAB workspace as the column
vectors freq and resp. The variables freq and resp contain 256 test
frequencies and the corresponding complex-valued frequency response
points, respectively.
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Tip To inspect these variables, enter:

whos freq resp

2 Create a frequency response model.

sys = frd(resp,freq);

sys is an frd model object, which is a data container for representing
frequency response data.

You can use frd models with many frequency-domain analysis commands.
For example, visualize the frequency response data using bode.

Tip By default, the frd command assumes that the frequencies are in
radians/second. To specify different frequency units, use the TimeUnit and
FrequencyUnit properties of the frd model object. For example:

sys = frd(resp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to radians/minute.

More About

• “About Model Objects” on page 1-2

• “Frequency Response Data (FRD) Models” on page 1-14

Proportional-Integral-Derivative (PID) Controller
How to create models representing PID controllers.

• “Continuous-Time PID Controller Representations” on page 2-7

• “Create Continuous-Time Parallel-Form PID Controller” on page 2-8

• “Create Continuous-Time Standard-Form PID Controller” on page 2-8
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Continuous-Time PID Controller Representations
You can represent continuous-time Proportional-Integral-Derivative (PID)
controllers in either parallel or standard form. The two forms differ in the
parameters used to express the proportional, integral, and derivative actions
and the filter on the derivative term, as shown in the following table.

Form Formula

Parallel

C K
K
s

K s
T sp

i d

f
  

1
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T s

T s
T
N

s
p

i

d

d
  



















1
1

1
,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant

Use a controller form that is convenient for your application. For example,
if you want to express the integrator and derivative actions in terms of time
constants, use Standard form.
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See “Discrete-Time Proportional-Integral-Derivative (PID) Controller” on
page 2-11 for information on creating PID Controllers in discrete time.

Create Continuous-Time Parallel-Form PID Controller
This example shows how to create a continuous-time
Proportional-Integral-Derivative (PID) controller in parallel form using pid.

Create the following parallel-form PID controller: C
s

s
s

  


29 5
26 2 4 3

0 06 1
.

. .
.

.

Kp = 29.5;
Ki = 26.2;
Kd = 4.3;
Tf = 0.06;
C = pid(Kp,Ki,Kd,Tf)

C is a pid model object, which is a data container for representing
parallel-form PID controllers.

Create Continuous-Time Standard-Form PID Controller
This example shows how to create a continuous-time
Proportional-Integral-Derivative (PID) controller in standard form using
pidstd.

Create the following standard-form PID controller:

C
s

s

s
  



















29 5 1
1

1 13
0 15

0 15
2 3

1
.

.
.

.
.

.

Kp = 29.5;
Ti = 1.13;
Td = 0.15;
N = 2.3;
C = pid(Kp,Ki,Kd,Tf)

C is a pidstd model object, which is a data container for representing
standard-form PID controllers.
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More About

• “About Model Objects” on page 1-2

• “PID Controllers” on page 1-16
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Discrete-Time Model Creation
How to create discrete-time models.

In this section...

“Discrete-Time Transfer Function Model” on page 2-10

“Discrete-Time Proportional-Integral-Derivative (PID) Controller” on page
2-11

Discrete-Time Transfer Function Model
This example shows how to create a discrete-time transfer function model
using tf.

Create the transfer function G z
z

z z
( ) =

− −2 2 6
with a sampling time of 0.1 s.

num = [1 0];
den = [1 -2 -6];
Ts = 0.1;
G = tf(num,den,Ts)

num and den are the numerator and denominator polynomial coefficients in
descending powers of z. G is a tf model object.

Tip Create a discrete-time zpk, ss, and frd models in a similar way by
appending a sampling period to the input arguments. For examples, see the
reference pages for those commands.

The sampling time is stored in the Ts property of G. Access Ts, using dot
notation:

G.Ts
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More About

• “About Model Objects” on page 1-2

• “Models with Fixed Coefficients” on page 1-10

Discrete-Time Proportional-Integral-Derivative (PID)
Controller

Discrete-Time PID Controller Representations
Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel

C K K IF z
K

T DF zp i
d

f
    

  
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T

IF z
T

T
N

DF z
p

i

d

d
    

  

















1
1

,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant
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IF(z) and DF(z) are the discrete integrator formulas for the integrator and
derivative filter, respectively. Use the IFormula and DFormula properties of
the pid or pidstd model objects to set the IF(z) and DF(z) formulas. The next
table shows available formulas for IF(z) and DF(z). Ts is the sample time.

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default)
T

z
s
1

BackwardEuler

T z
z

s
1

Trapezoidal

T z
z

s
2

1
1




If you do not specify a value for IFormula, DFormula, or both, ForwardEuler
is used by default.

Create Discrete-Time Standard-Form PID Controller
This example shows how to create a standard-form discrete-time
Proportional-Integral-Derivative (PID) controller that has Kp = 29.5, Ti = 1.13,
Td = 0.15 N = 2.3, and sample time Ts 0.1 :

C = pidstd(29.5,1.13,0.15,2.3,0.1,...
'IFormula','Trapezoidal','DFormula','BackwardEuler')

This command creates a pidstd model with IF z
T z

z
s   

2
1
1
and

DF z
T z
z

s  
1
.

You can set the discrete integrator formulas for a parallel-form controller
in the same way, using pid.
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More About

• “About Model Objects” on page 1-2

• “PID Controllers” on page 1-16
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Multi-Input Multi-Output (MIMO) Model Creation
How to create multi-input multi-output (MIMO) models.

In this section...

“Multi-Input Multi-Output Transfer Function Model” on page 2-14

“Multi-Input Multi-Output State-Space Model” on page 2-15

“Multi-Input Multi-Output Descriptor State-Space Model” on page 2-17

“Multi-Input Multi-Output Frequency Response Data Model” on page 2-18

“Select Input/Output Pairs in Multi-Input Multi-Output (MIMO) Models”
on page 2-20

Multi-Input Multi-Output Transfer Function Model
This example shows how to create a multi-input multi-output (MIMO)
transfer function model by concatenating single-input single-output (SISO)
transfer function models.

To create the two-input, one-output MIMO transfer function:

G s

s
s
s

s s

  




 



















1
1
2

4 52

,

perform the following steps:

1 Create SISO transfer functions for each channel.

g11 = tf([1 -1],[1 1]);
g21 = tf([1 2],[1 4 5]);

Tip Use zpk instead of tf to create MIMO transfer functions in factorized
form.
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2 Concatenate the transfer functions.

G = [g11; g21];

More About

• “About Model Objects” on page 1-2

• “Transfer Functions” on page 1-11

Multi-Input Multi-Output State-Space Model
This example shows how to create a MIMO state-space model using ss.

You create a MIMO state-space model in the same way as you create a
single-input, single-output (SISO) state-space model. The only difference
between the SISO and MIMO cases is the dimensions of the state-space
matrices. The dimensions of the B, C, and D matrices increase with the
numbers of inputs and outputs as shown in the following illustration.
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In this example, you create a state-space model for a rotating body with
inertia tensor J, damping force F, and three axes of rotation, related as:
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J
d
dt

F T

y






 

 .

The system input T is the driving torque. The output y is the vector of angular
velocities of the rotating body.

To express this system in state-space form:

dx
dt

Ax Bu

y Cx Du

= +

= +

rewrite it as:

d
dt

J F J T

y






= − +

=

− −1 1

.

Then the state-space matrices are:

A J F B J C I D     1 1 0, , , .

To create this model, enter the following commands:

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0:
sys_mimo = ss(A,B,C,D);

These commands assume that J is the inertia tensor of a cube rotating about
its corner, and the damping force has magnitude 0.2.

sys_mimo is an ss model.
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More About

• “About Model Objects” on page 1-2

• “State-Space Models” on page 1-12

Multi-Input Multi-Output Descriptor State-Space
Model
This example shows how to create a continuous-time descriptor (implicit)
state-space model using dss.

Note This example uses the same rotating-body system shown in
“Multi-Input Multi-Output State-Space Model” on page 2-15, where you
inverted the inertia matrix J to obtain the value of the B matrix. If J is
poorly-conditioned for inversion, you can instead use a descriptor (implicit)
state-space model.

A descriptor (implicit) state-space model is of the form:

E
dx
dt

Ax Bu

y Cx Du

 

 

Create a state-space model for a rotating body with inertia tensor J, damping
force F, and three axes of rotation, related as:

J
d
dt

F T

y






 

 .

The system input T is the driving torque. The output y is the vector of angular
velocities of the rotating body. You can write this system as a descriptor
state-space model having the following state-space matrices:

A F B I C I D E J     , , , , .0
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To create this system, enter:

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -F;
B = eye(3);
C = eye(3);
D = 0;
E = J;
sys_mimo = dss(A,B,C,D,E)

These commands assume that J is the inertia tensor of a cube rotating about
its corner, and the damping force has magnitude 0.2.

sys is an ss model with a nonempty E matrix.

More About

• “About Model Objects” on page 1-2

• “State-Space Models” on page 1-12

Multi-Input Multi-Output Frequency Response Data
Model
This example shows how to create a MIMO frequency-response model using
frd.

Frequency response data for a MIMO system includes a vector of complex
response data for each of the input/output (I/O) pair of the system. Thus, if
you measure the frequency response of each I/O pair your system at a set of
test frequencies, you can use the data to create a frequency response model:

1 Load frequency response data in AnalyzerDataMIMO.mat.

load AnalyzerDataMIMO H11 H12 H21 H22 freq

This command loads the data into the MATLAB workspace as five
column vectors H11, H12, H21, H22, and freq. The vector freq contains
100 test frequencies. The other four vectors contain the corresponding
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complex-valued frequency response of each I/O pair of a two-input,
two-output system.

Tip To inspect these variables, enter:

whos H11 H12 H21 H22 freq

2 Organize the data into a three-dimensional array.

Hresp = zeros(2,2,length(freq));
Hresp(1,1,:) = H11;
Hresp(1,2,:) = H12;
Hresp(2,1,:) = H21;
Hresp(2,2,:) = H22;

The dimensions of Hresp are the number of outputs, number of inputs, and
the number of frequencies for which there is response data. Hresp(i,j,:)
contains the frequency response from input j to output i.

3 Create a frequency-response model.

H = frd(Hresp,freq);

sys is an frd model object, which is a data container for representing
frequency response data.

You can use frd models with many frequency-domain analysis commands.
For example, visualize the response of this two-input, two-output system
using bode.
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Tip By default, the frd command assumes that the frequencies are in
radians/second. To specify different frequency units, use the TimeUnit and
FrequencyUnit properties of the frd model object. For example:

sys = frd(Hresp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to in radians/minute.

More About

• “About Model Objects” on page 1-2

• “Frequency Response Data (FRD) Models” on page 1-14

Select Input/Output Pairs in Multi-Input Multi-Output
(MIMO) Models
This example shows how to select the response from the first input to the
second output of a MIMO model.

1 Create a two-input, one-output transfer function.

N = {[1 -1],[1];[1 2],[3 1 4]};
D = [1 1 10];
H = tf(N,D)

Note For more information about using cell arrays to create MIMO
transfer functions, see the tf reference page.

2 Select the response from the second input to the output of H.

To do this, use MATLAB array indexing.

H12 = H(1,2)

For any MIMO system H, the index notation H(i,j) selects the response
from the jth input to the ith output.
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Models with Time Delays
How to create models that include time delays.

In this section...

“About Modeling Time Delays” on page 2-21

“First Order Plus Dead Time Model” on page 2-21

“Input and Output Delay in State-Space Model” on page 2-23

“Transport Delay in Multi-Input, Multi-Output (MIMO) Transfer Function”
on page 2-25

“Closing Feedback Loops with Time Delays” on page 2-26

“Discrete-Time Transfer Function with Time Delay” on page 2-29

“Time-Delay Approximation” on page 2-29

“Frequency Response Data (FRD) Model with Time Delay” on page 2-44

“About Internal Delays” on page 2-46

About Modeling Time Delays
Use the following model properties to represent time delays in linear systems.

• InputDelay, OutputDelay— Time delays at system inputs or outputs

• ioDelay, InternalDelay— Time delays that are internal to the system

In discrete-time models, these properties are constrained to integer values
that represent delays expressed as integer multiples of the sampling time. To
approximate discrete-time models with delays that are a fractional multiple of
the sampling time, use thiran.

First Order Plus Dead Time Model
This example shows how to create a first order plus dead time model using
the InputDelay or OutputDelay properties of tf.

To create the following first-order transfer function with a 2.1 s time delay:
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G s e
s

s  


2 1 1
10

. ,

enter:

G = tf(1,[1 10],'InputDelay',2.1)

where InputDelay specifies the delay at the input of the transfer function.

Tip You can use InputDelay with zpk the same way as with tf:

G = zpk([],-10,1,'InputDelay',2.1)

For SISO transfer functions, a delay at the input is equivalent to a delay at the
output. Therefore, the following command creates the same transfer function:

G = tf(1,[1 10],'OutputDelay',2.1)

Use dot notation to examine or change the value of a time delay. For example,
change the time delay to 3.2 as follows:

G.OutputDelay = 3.2;

To see the current value, enter:

G.OutputDelay

ans =

3.2000
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Tip An alternative way to create a model with a time delay is to specify the
transfer function with the delay as an expression in s:

1 Create a transfer function model for the variable s.

s = tf('s');

2 Specify G(s) as an expression in s.

G = exp(-2.1*s)/(s+10);

More About

• “About Model Objects” on page 1-2

• “Transfer Functions” on page 1-11

Input and Output Delay in State-Space Model
This example shows how to create state-space models with delays at the
inputs and outputs, using the InputDelay or OutputDelay properties of ss.

Create a state-space model describing the following one-input, two-output
system:

dx t

dt
x t u t

y t
x t

x t

 
      

  
 

  










2 3 1 5

0 7

.

.
.

This system has an input delay of 1.5. The first output has an output delay of
0.7, and the second output is not delayed.
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Note In contrast to SISO transfer functions, input delays are not equivalent
to output delays for state-space models. Shifting a delay from input to
output in a state-space model requires introducing a time shift in the model
states. For example, in the model of this example, defining T = t – 1.5 and
X(T) = x(T + 1.5) results in the following equivalent system:

dX T

dT
X T u T

y T
X T
X T

 
      

  
 

  










2 3

2 2
1 5
.
.

.

All of the time delays are on the outputs, but the new state variable X is
time-shifted relative to the original state variable x. Therefore, if your states
have physical meaning, or if you have known state initial conditions, consider
carefully before shifting time delays between inputs and outputs.

To create this system:

1 Define the state-space matrices.

A = -2;
B = 3;
C = [1;-1];
D = 0;

2 Create the model.

G = ss(A,B,C,D,'InputDelay',1.5,'OutputDelay',[0.7;0])

G is a ss model.
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Tip Use delayss to create state-space models with more general combinations
of input, output, and state delays, of the form:

dx

dt
Ax t Bu t A x t t B u t t

y t Cx t Du t

j j j j

j

N

= + + − + −

= +

=
∑( ) ( ) ( ( ) ( ))

( ) ( ) (

1

)) ( ( ) ( ))+ − + −
=

∑ C x t t D u t tj j j j

j

N

1

More About

• “About Model Objects” on page 1-2

• “State-Space Models” on page 1-12

Transport Delay in Multi-Input, Multi-Output (MIMO)
Transfer Function
This example shows how to create a MIMO transfer function with different
transport delays for each input-output (I/O) pair.

Create the MIMO transfer function:

H s
e

s
e

s
s

e
s
s

  























 



0 1 0 3

0 2

2 1
10

10
1
5

. .

.
.

Time delays in MIMO systems can be specific to each I/O pair, as in this
example. You cannot use InputDelay and OutputDelay to model I/O-specific
transport delays. Instead, use ioDelay to specify the transport delay across
each I/O pair.

To create this MIMO transfer function:

1 Create a transfer function model for the variable s.

2-25



2 Model Creation

s = tf('s');

2 Use the variable s to specify the transfer functions of H without the time
delays.

H = [2/s (s+1)/(s+10); 10 (s-1)/(s+5)];

3 Specify the ioDelay property of H as an array of values corresponding to
the transport delay for each I/O pair.

H.ioDelay = [0.1 0.3; 0 0.2];

H is a two-input, two-output tf model. Each I/O pair in H has the time delay
specified by the corresponding entry in tau.

Closing Feedback Loops with Time Delays
This example shows how internal delays arise when you interconnect models
that have input, output, or transport time delays.

Create a model of the following control architecture:

�

� �

�� ������

����

���
�
� ��

G is the plant model, which has an input delay. C is a proportional-integral
(PI) controller.

To create a model representing the closed-loop response of this system:

1 Create the plant G and the controller C.

G = tf(1,[1 10],'InputDelay',2.1)
C = pid(0.5,2.3);

C has a proportional gain of 0.5 and an integral gain of 2.3.

2 Use feedback to compute the closed-loop response from r to y.
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T = feedback(C*G,1);

The time delay in T is not an input delay as it is in G. Because the time delay
is internal to the closed-loop system, the software returns T as an ss model
with an internal time delay of 2.1 seconds.

Note In addition to feedback, any “System Interconnections” function
(including parallel and series) can give rise to internal delays.

T is an exact representation of the closed-loop response, not an approximation.
To access the internal delay value, enter:

T.InternalDelay

A step plot of T confirms the presence of the time delay:

step(T)
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Note Most analysis commands, such as step, bode and margin, support
models with internal delays.

The internal time delay is stored in the InternalDelay property of T. Use
dot notation to access InternalDelay. For example, to change the internal
delay to 3.5 seconds, enter:

T.InternalDelay = 3.5
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You cannot modify the number of internal delays because they are structural
properties of the model.

More About

• “About Internal Delays” on page 2-46

• “Model Interconnection Functions” on page 5-20

Discrete-Time Transfer Function with Time Delay
This example shows how to create a discrete-time transfer function with a
time delay.

Specify time delays for discrete-time models in the same way as for
continuous-time models, except for discrete-time models, delay values must
be integer multiples of the sampling time. For example, create the following
first-order transfer function, with a sampling time of Ts = 0.1 s:

H z z
z

  


25 2
0 95.

.

H = tf(2,[1 -0.95],0.1,'InputDelay',25)

Setting InputDelay to 25 results in a delay of 25 sampling periods.

Tip Use thiran to approximate discrete-time models with delays that are a
fractional multiple of the sampling time.

Time-Delay Approximation

• “About Time-Delay Approximation” on page 2-30

• “Time-Delay Approximation in Continuous-Time Open-Loop Model” on
page 2-30

• “Time-Delay Approximation in Continuous-Time Closed-Loop Model” on
page 2-34
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• “Approximate Different Delays with Different Approximation Orders” on
page 2-39

• “Convert Time Delay to Factors of 1/z in Discrete-Time Model” on page 2-40

• “Fractional Time-Delay Approximation in Discrete-Time Model” on page
2-42

About Time-Delay Approximation
Many control design algorithms cannot handle time delays directly. For
example, techniques such as root locus, LQG, and pole placement do not work
properly if time delays are present. A common technique is to replace delays
with all-pass filters that approximate the delays.

To approximate time delays in continuous-time models, use the pade
command to compute a Padé approximation. The Padé approximation is valid
only at low frequencies, and provides better frequency-domain approximation
than time-domain approximation. It is therefore important to compare the
true and approximate responses to choose the right approximation order
and check the approximation validity.

For discrete-time models, use delay2z to convert a time delay to factors of 1/z
where the time delay is an integer multiple of the sampling time. Use thiran
to approximate fractional time delays.

Time-Delay Approximation in Continuous-Time Open-Loop
Model
This example shows how to approximate delays in a continuous-time
open-loop system using pade.

Padé approximation is helpful when using analysis or design tools that do not
support time delays.

1 Create sample open-loop system with an output delay.

�� ����!�
�����
�"�����

�

�

2-30



Models with Time Delays

s = tf('s');
P = exp(-2.6*s)/(s^2+0.9*s+1);

P is a second-order transfer function (tf) object with a time delay.

2 Compute the first-order Padé approximation of P.

Pnd1 = pade(P,1)

This command replaces all time delays in Pwith a first-order approximation.
Therefore, Pnd1 is a third-order transfer function with no delays:

-s + 0.7692
----------------------------------
s^3 + 1.669 s^2 + 1.692 s + 0.7692

3 Compare the frequency response of the original and approximate models
using bodeplot.

h = bodeoptions;
h.PhaseMatching = 'on';
bodeplot(P,'-b',Pnd1,'-.r',{0.1,10},h)
legend('Exact delay','First-Order Pade','Location','SouthWest')
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The magnitude of P and Pnd1 match exactly. However, the phase of Pnd1
deviates from the phase of P beyond approximately 1 rad/s.

4 Increase the Padé approximation order to extend the frequency band in
which the phase approximation is good.

Pnd3 = pade(P,3);

5 Compare the frequency response of P, Pnd1 and Pnd3.

bodeplot(P,'-b',Pnd3,'-.r',Pnd1,':k',{0.1 10},h)
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','SouthWest')
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The phase approximation error is reduced by using a third-order Padé
approximation.

6 Compare the time domain responses of the original and approximated
systems using step.

step(P,'-b',Pnd3,'-.r',Pnd1,':k')
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','Southeast')
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Using the Padé approximation introduces a nonminimum phase artifact
(“wrong way” effect) in the initial transient response. The effect is reduced
in the higher-order approximation.

Note Using too high an approximation order may result in numerical
issues and possibly unstable poles. Therefore, avoid Padé approximations
with order N>10.

Time-Delay Approximation in Continuous-Time Closed-Loop
Model
This example shows how to approximate delays in a continuous-time
closed-loop system with internal delays, using pade.
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Padé approximation is helpful when using analysis or design tools that do not
support time delays.

1 Create sample continuous-time closed-loop system with an internal delay.
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Construct a model Tcl of the closed-loop transfer function from r to y.

s = tf('s');
G = (s+1)/(s^2+.68*s+1)*exp(-4.2*s);
C = pid(0.06,0.15,0.006);
Tcl = feedback(G*C,1);

Tcl contains an internal delay.

Tcl.InternalDelay
ans =

4.2000

2 Compute the first-order Padé approximation of Tcl.

Tnd1 = pade(Tcl,1);

Tnd1 is a fourth-order state-space (ss) model with no delays.

3 Compare the frequency response of the original and approximate models
using bodeplot.

h = bodeoptions;
h.PhaseMatching = 'on';
bodeplot(Tcl,'-b',Tnd1,'-.r',{.1,10},h);
legend('Exact delay','First-Order Pade','Location','SouthWest');
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The magnitude and phase approximation errors are significant beyond
1 rad/s.

4 Compare the time domain response of Tcl and Tnd1 using step.

step(Tcl,'-b',Tnd1,'-.r');
legend('Exact delay','First-Order Pade','Location','SouthEast');
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Using the Padé approximation introduces a nonminimum phase artifact
(“wrong way” effect) in the initial transient response.

5 Increase the Padé approximation order to see if this will extend the
frequency with good phase and magnitude approximation.

Tnd3 = pade(Tcl,3);

6 Observe the behavior of the third-order Padé approximation of Tcl.
Compare the frequency response of Tcl and Tnd3.

bode(Tcl,'-b',Tnd3,'-.r',Tnd1,'--k',{.1,10},h);
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','SouthWest');
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The magnitude and phase approximation errors are reduced when a
third-order Padé approximation is used.

Increasing the Padé approximation order extends the frequency band where
the approximation is good. However, too high an approximation order may
result in numerical issues and possibly unstable poles. Therefore, avoid Padé
approximations with order N>10.

More About

• “About Internal Delays” on page 2-46
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Approximate Different Delays with Different Approximation
Orders
This example shows how to specify different Padé approximation orders
to approximate internal and output delays in a continuous-time open-loop
system.

1 Load sample continuous-time open-loop system that contains internal and
output time delays.

load PadeApproximation1 sys;

sys is a second-order continuous-time ss model with internal delay 3.4 s
and output delay 1.5 s.

Tip Enter get(sys) for more properties of sys.

2 Use pade to compute a third-order approximation of the internal delay and
a first-order approximation of the output delay.

P13 = pade(sys,inf,1,3);

The three input arguments following sys specify the approximation orders
of any input, output, and internal delays of sys, respectively. inf specifies
that a delay is not to be approximated. The approximation orders for the
output and internal delays are one and three respectively.

P13 is a sixth-order continuous-time ss model with no delays.

3 (Optional) For comparison, approximate only the internal delay of sys,
leaving the output delay intact.

P3 = pade(sys,inf,inf,3);

P3 is a fifth-order continuous-time ss model with an output delay of 1.5
s. The internal delay is approximated and absorbed into the state-space
matrices.

4 (Optional) Compare the frequency response of the exact and approximated
systems. sys, P13, P3.

2-39



2 Model Creation

h = bodeoptions;
h.PhaseMatching = 'on';
bode(sys,'b-',P13,'r-.',P3,'k--',h,{.01,10});
legend('Exact Output and Internal Time Delays',...

'Pade Approximation - First-order Output, ...
Third-order Internal Delays',...

'Pade Approximation - Third-order Internal Delay',...
'location','SouthWest')

Convert Time Delay to Factors of 1/z in Discrete-Time Model
This example shows how to convert a time delay in a discrete-time model to
factors of 1/z using delay2z.
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In a discrete-time model, a time delay of one sampling interval is equivalent
to a factor of 1/z (a pole at z = 0) in the model. Therefore, time delays stored in
the InputDelay, OutputDelay, or ioDelay properties of a discrete-time model
can be rewritten in the model dynamics by rewriting them as poles at z = 0.
However, the additional poles increase the order of the system. Particularly
for large time delays, this can yield systems of very high order, leading to long
computation times or numerical inaccuracies.

To illustrate how to eliminate time delays in a discrete-time closed-loop model,
and to observe the effects of doing so, create the following closed-loop system:

�
� � ��

where G is a first-order discrete-time system with an input delay, and C is a
PI controller.

G = ss(0.9,0.125,0.08,0,'Ts',0.01,'InputDelay',7);
C = pid(6,90,0,0,'Ts',0.01);
T = feedback(C*G,1);

T is a second-order state-space model with an internal delay, as the following
commands show:

order(T)
T.InternalDelay

Use delay2z to replace the internal delay by z-7.

Tnd = delay2z(T);
Tnd.InternalDelay

Tnd has InternalDelay = 0, and the step response of Tnd exactly matches
that of T:

step(T,Tnd)
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However, Tnd is a ninth-order model, due to the seven extra poles introduced
by absorbing the seven-unit delay into the model. To see this, as the following
command shows:

order(Tnd)

Fractional Time-Delay Approximation in Discrete-Time Model
Use the thiran command to approximate a time delay that is a fractional
multiple of the sampling time as a Thiran all-pass filter.

For a time delay of tau and a sampling time of Ts, the syntax thiran(tau,Ts)
creates a discrete-time transfer function that is the product of two terms:

• A term representing the integer portion of the time delay as a pure line
delay, (1/z)N, where N = ceil(tau/Ts).

• A term approximating the fractional portion of the time delay (tau - NTs)
as a Thiran all-pass filter.
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Discretizing a Padé approximation does not guarantee good phase matching
between the continuous-time delay and its discrete approximation. Using
thiran to generate a discrete-time approximation of a continuous-time delay
can yield much better phase matching. For example, the following figure
shows the phase delay of a 10.2-second time delay discretized with a sample
time of 1 s, approximated in three ways:

• a first-order Padé approximation, discretized using the tustin method of
c2d

• an 11th-order Padé approximation, discretized using the tustin method of
c2d

• an 11th-order Thiran filter

The Thiran filter yields the closest approximation of the 10.2-second delay.

See the thiran reference page for more information about Thiran filters.
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Frequency Response Data (FRD) Model with Time
Delay
This example shows that absorbing time delays into frequency response data
can cause undesirable phase wrapping at high frequencies.

When you collect frequency response data for a system that includes time
delays, you can absorb the time delay into the frequency response as a
phase shift. Alternatively, if you are able to separate time delays from
your measured frequency response, you can represent the delays using the
InputDelay, OutputDelay, or ioDelay properties of the frd model object. The
latter approach can give better numerical results, as this example illustrates.

The frd model fsys includes a transport delay of 2 s. Load the model into the
MATLAB workspace and inspect the time delay with the following commands:

load frdexample fsys
fsys.ioDelay

A Bode plot of fsys shows the effect of the transport delay:

bode(fsys)
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The transport delay ioDelay = 2 introduces a rapid accumulation of phase
with increasing frequency.

The delay2z command absorbs all time delays directly into the frequency
response, resulting in an frd model with ioDelay = 0:

fsys2 = delay2z(fsys);
fsys2.ioDelay

Comparing the two ways of representing the delay shows that absorbing the
delay into the frequency response causes phase-wrapping.

bode(fsys,fsys2)
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Phase wrapping can introduce numerical inaccuracy at high frequencies or
where the frequency grid is sparse. For that reason, if your system takes the
form e–τsG(s), you might get better results by measuring frequency response
data for G(s) and using InputDelay, OutputDelay, or ioDelay to model the
time delay τ.

More About

• “Frequency Response Data (FRD) Models” on page 1-14

About Internal Delays
Using the InputDelay, OutputDelay, and ioDelay properties, you can model
simple processes with transport delays. However, these properties cannot
model more complex situations, such as feedback loops with delays. In
addition to the InputDelay and OutputDelay properties, state-space (ss)
models have an InternalDelay property. This property lets you model
the interconnection of systems with input, output, or transport delays,
including feedback loops with delays. You can use InternalDelay property to
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accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

• Concatenating state-space models with input and output delays

• Feeding back a delayed signal

• Converting MIMO tf or zpk models with transport delays to state-space
form

Using internal time delays, you can do the following:

• In continuous time, generate approximate-free time and frequency
simulations, because delays do not have to be replaced by a Padé
approximation. In continuous time, this allows for more accurate analysis
of systems with long delays.

• In discrete time, keep delays separate from other system dynamics, because
delays are not replaced with poles at z = 0, which boosts efficiency of time
and frequency simulations for discrete-time systems with long delays.

• Use most Control System Toolbox functions.

• Test advanced control strategies for delayed systems. For example, you
can implement and test an accurate model of a Smith predictor. See the
Smith predictor demo.

Why Internal Delays Are Necessary
This example illustrates why input, output, and transport delays not enough
to model all types of delays that can arise in dynamic systems. Consider the
simple feedback loop with a 2 s. delay:

�'�
�!��

The closed-loop transfer function is
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The delay term in the numerator can be represented as an output delay.
However, the delay term in the denominator cannot. In order to model the
effect of the delay on the feedback loop, the InternalDelay property is needed
to keep track of internal coupling between delays and ordinary dynamics.

Typically, you do not create state-space models with internal delays directly,
by specifying the A, B, C, and D matrices together with a set of internal
delays. Rather, such models arise when you interconnect models having
delays. There is no limitation on how many delays are involved and how the
models are connected. For an example of creating an internal delay by closing
a feedback loop, see “Closing Feedback Loops with Time Delays” on page 2-26.

Behavior of Models With Internal Delays
When you work with models having internal delays, be aware of the following
behavior:

• When a model interconnection gives rise to internal delays, the software
returns an ss model regardless of the interconnected model types. This
occurs because only ss supports internal delays.

• The software fully supports feedback loops. You can wrap a feedback loop
around any system with delays.

• When displaying the A, B, C, and D matrices, the software sets all delays
to zero (creating a zero-order Padé approximation). This approximation
occurs for the display only, and not for calculations using the model.

For some systems, setting delays to zero creates singular algebraic loops,
which result in either improper or ill-defined, zero-delay approximations.
For these systems:

- Entering sys returns only sizes for the matrices of a system named sys.

- Entering sys.a produces an error.

The limited display and the error do not imply a problem with the model
sys itself.
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Inside Time Delay Models
State-space objects use generalized state-space equations to keep track of
internal delays. Conceptually, such models consist of two interconnected
parts:

• An ordinary state-space model H(s) with an augmented I/O set

• A bank of internal delays.

The corresponding state-space equations are:

x Ax t B u t B w t
y t C x t D u t D w t
z t C x

= + +
= + +
=

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) (

1 2

1 11 12

2 tt D u t D w t
w t z t j Nj j

) ( ) ( )
( ) ( ), ,...,

+ +
= − =

21 22

1τ

You need not bother with this internal representation to use the tools. If,
however, you want to extract H or the matrices A,B1,B2, ,... , you can use
getDelayModel, For the example:

P = 5*exp(-3.4*s)/(s+1);
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C = 0.1 * (1 + 1/(5*s));
T = feedback(ss(P*C),1);

[H,tau] = getDelayModel(T,'lft'); size(H)

Note that H is a two-input, two-output model whereas T is SISO. The
inverse operation (combining H and tau to construct T) is performed by
setDelayModel.

See [1], [2] for details.

Functions That Support Internal Time Delays
The following commands support internal delays for both continuous- and
discrete-time systems:

• All interconnection functions

• Time domain response functions—except for impulse and initial

• Frequency domain functions—except for norm

Limitations on Functions that Support Internal Time Delays. The
following commands support internal delays for both continuous- and
discrete-time systems and have certain limitations:

• allmargin, margin—Uses interpolation, therefore these commands are
only as precise as the fineness of the specified grid.

• pole, zero—Returns poles and zeros of the system with all delays set to
zero.

• ssdata, get—If an SS model has internal delays, these commands return
the A, B, C, and D matrices of the system with all internal delays set to zero.
Use getDelayModel to access the internal state-space representation of
models with internal delays.

Functions That Do Not Support Internal Time Delays
The following commands do not support internal time delays:

• System dynamics—norm and lti/isstable

• Time-domain analysis—initial and initialplot
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• Model simplification—balreal, balred, and modred

• Compensator design—rlocus, lqg, lqry, lqrd, kalman, kalmd, lqgreg,
lqgtrack, lqi, and augstate.

To use these functions on a system with internal delays, use pade to
approximate the internal delays. See “Time-Delay Approximation” on page
2-29.
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Models with Parametric or Tunable Coefficients

In this section...

“Tunable Low-Pass Filter” on page 2-52

“Tunable Second-Order Filter” on page 2-53

“State-Space Model With Both Fixed and Tunable Parameters” on page 2-54

“Control System With Tunable Components” on page 2-55

Tunable Low-Pass Filter
This example shows how to create the low-pass filter F = a/(s + a) with one
tunable parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and
denominator coefficients of an ltiblock.tf block are independent. Instead,
construct F using the tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.

2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property.
You can connect F with other tunable or numeric models to create more
complex models of control systems. For an example, see “Control System With
Tunable Components” on page 2-55.

More About

• “Models with Tunable Coefficients” on page 1-19
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Tunable Second-Order Filter
This example shows how to create a parametric model of the second-order
filter:

F s
s s
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where the damping ζ and the natural frequency ωn are tunable parameters.

1 Define the tunable parameters using realp.

wn = realp('wn',3);
zeta = realp('zeta',0.8);

wn and zeta are realp parameter objects, with initial values 3 and 0.8,
respectively.

2 Create a model of the filter using the tunable parameters.

F = tf(wn^2,[1 2*zeta*wn wn^2])

The inputs to tf are the vectors of numerator and denominator coefficients
expressed in terms of wn and zeta.

F is a genss. The property F.Blocks lists the two tunable parameters
wn and zeta.

3 (Optional) Examine the number of tunable blocks in the model using
nblocks.

nblocks(F)

This command returns the result:

ans =

6

F has two tunable parameters, but the parameter wn appears five times —
twice in the numerator and three times in the denominator.
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4 (Optional) Rewrite F for fewer occurrences of wn.

The second-order filter transfer function can be expressed as follows:
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Use this expression to create the tunable filter:

F = tf(1,[(1/wn)^2 2*zeta*(1/wn) 1])

5 (Optional) Examine the number of tunable blocks in the new filter model.

nblocks(F)

This command returns the result:

ans =

4

In the new formulation, there are only three occurrences of the tunable
parameter wn. Reducing the number of occurrences of a block in a model
can improve performance time of calculations involving the model.
However, the number of occurrences does not affect the results of tuning
the model or sampling it for parameter studies.

More About

• “Models with Tunable Coefficients” on page 1-19

State-Space Model With Both Fixed and Tunable
Parameters
This example shows how to create a state-space (genss) model having both
fixed and tunable parameters.

Create a state-space model having the following state-space matrices:

2-54



Models with Parametric or Tunable Coefficients
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where a and b are tunable parameters, whose initial values are –1 and 3,
respectively.

1 Create the tunable parameters using realp.

a = realp('a',-1);
b = realp('b',3);

2 Define a generalized matrix using algebraic expressions of a and b.

A = [1 a+b;0 a*b]

A is a generalized matrix whose Blocks property contains a and b. The
initial value of A is M = [1 2;0 -3], from the initial values of a and b.

3 Create the fixed-value state-space matrices.

B = [-3.0;1.5];
C = [0.3 0];
D = 0;

4 Use ss to create the state-space model.

sys = ss(A,B,C,D)

sys is a generalized LTI model (genss) with tunable parameters a and b.

More About

• “Models with Tunable Coefficients” on page 1-19

Control System With Tunable Components
This example shows how to model a control system having a mixture of
numeric and tunable components by creating models representing each
component and interconnecting them to create a genss model.

Create a model of the following control system:
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The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is
S(s) = 5/(s + 4). The controller C is a tunable PID controller, and the prefilter
F = a/(s + a) is a low-pass filter with one tunable parameter, a.

1 Create models representing the plant and sensor dynamics.

Because the plant and sensor dynamics are fixed, represent them using
numeric LTI models:

G = zpk([],[-1,-1],1);
S = tf(5,[1 4]);

2 Create a tunable representation of the controller C using ltiblock.pid.

C = ltiblock.pid('C','PID');

ltiblock.pid is a control design block with a predefined
proportional-integral-derivative (PID) structure. For more information
about predefined control design blocks, see “Control Design Blocks” on
page 1-7.

3 Create a model of the filter F with one tunable parameter.

a Create the tunable parameter using realp:

a = realp('a',10);

a is a realp (real tunable parameter) object with initial value 10.

b Create the tunable model of the filter using tf with the tunable
parameter a:

F = tf(a,[1 a]);
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F is a genss model object.

4 Use model interconnection commands to connect the models together to
construct a model of the closed-loop response from r to y:

T = feedback(G*C,S)*F

T is a genss model object. In contrast to an aggregate model formed by
connecting only numeric LTI models, T keeps track of the tunable elements of
the control system. The tunable elements are stored in the Blocks property of
the genss model object. Entering:

T.Blocks

displays the tunable elements of T:

ans =

C: [1x1 ltiblock.pid]
a: [1x1 realp]

More About

• “Models with Tunable Coefficients” on page 1-19
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Model Arrays

In this section...

“About Model Arrays” on page 2-58

“One-Dimensional Model Array with Single Parameter Variation” on page
2-61

“Select Models from Array” on page 2-61

“Array With Variations in Two Parameters” on page 2-64

“Sample a Tunable (Parametric) Model for Parameter Studies” on page 2-66

About Model Arrays

What Are Model Arrays?
In many applications, it is useful to consider collections multiple model
objects. For example, you may want to consider a model with a parameter
that varies across a range of values, such as

sys1 = tf(1, [1 1 1]);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 3]);

and so on. Model arrays are a convenient way to store and analyze such a
collection. Model arrays are collections of multiple linear models, stored as
elements in a single MATLAB array.

For all models collected in a single model array, the following attributes must
be the same:

• The number of inputs and outputs

• The sample time Ts

• The time unit TimeUnit

Uses of Model Arrays
Uses of model arrays include:
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• Representing and analyzing sensitivity to parameter variations

• Validating a controller design against several plant models

• Representing linear models arising from the linearization of a nonlinear
system at several operating points

• Storing models obtained from several system identification experiments
applied to one plant

Using model arrays, you can apply almost all of the basic model operations
that work on single model objects to entire sets of models at once. Functions
operate on arrays model by model, allowing you to manipulate an entire
collection of models in a vectorized fashion. You can also use analysis
functions such as bode, nyquist, and step to model arrays to analyze multiple
models simultaneously. You can access the individual models in the collection
through MATLAB array indexing.

Visualizing Model Arrays
To visualize the concept of a model array, consider the set of five transfer
function models shown below. In this example, each model has two inputs
and two outputs. They differ by parameter variations in the individual model
components.

Just as you might collect a set of two-by-two matrices in a multidimensional
array, you can collect this set of five transfer function models as a list in a
model array under one variable name, say, sys. Each element of the model
array is a single model object.
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Visualizing Selection of Models From Model Arrays
The following illustration shows how indexing selects models from a
one-dimensional model array. The illustration shows a 1-by-5 array sysa of
2-input, 2-output transfer functions.

The following illustration shows selection of models from the two-dimensional
model array m2d.

2-60



Model Arrays

One-Dimensional Model Array with Single Parameter
Variation
This example shows how to create a one-dimensional array of transfer
functions using stack. One parameter of the transfer function varies from
model to model in the array.

Create an array of transfer functions representing a low-pass filter

F s
a

s a
  


, at three values of the roll-off frequency a:

1 Create transfer function models representing the filter with roll-off
frequency at a = 3, 5, and 7.

F1 = tf(3,[1 3]);
F2 = tf(5,[1 5]);
F3 = tf(7,[1 7]);

2 Use stack to build an array.

Farray = stack(1,F1,F2,F3)

The first argument to stack specifies the array dimension along which
stack builds an array. The remaining arguments specify the models to
arrange along that dimension.

Farray is a 3-by-1 array of transfer functions.

Note Concatenating models with MATLAB array concatenation commands,
instead of with stack, creates multi-input multi-output (MIMO) models
rather than model arrays. For example:

G = [F1;F2;F3]

creates a one-input, three-output transfer function model, not a 3-by-1 array.

Select Models from Array
This example shows how to select individual models or sets of models from a
model array using array indexing.
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1 Load the transfer function array m2d into the MATLAB workspace.

load LTIexamples m2d

2 (Optional) Plot the step response of m2d.

step(m2d)

The step response shows that m2d contains six one-input, two-output
models. The step command plots all of the models in an array on a single
plot.

3 (Optional) Examine the dimensions of m2d.

arraydim = size(m2d)

This command produces the result:

arraydim =

2 1 2 3

• The first entries of arraydim, 2 and 1, show that m2d is an array of
two-output, one-input transfer functions.
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• The remaining entries in arraydim give the array dimensions of m2d,
2-by-3.

In general, the dimensions of a model array are [Ny,Nu,S1,...,Sk]. Ny
and Nu are the numbers of outputs and inputs of each model in the array.
S1,...,Sk are the array dimensions. Thus, Si is the number of models
along the ith array dimension.

4 Select the transfer function in the second row, first column of m2d.

To do so, use MATLAB array indexing.

sys = m2d(:,:,2,1)

Tip You can also access models using single index referencing of the array
dimensions. For example,

sys = m2d(:,:,4)

selects the same model as m2d(:,:,2,1).

5 Select the array of subsystems from the first input to the first output
of each model in m2d.

m11 = m2d(1,1,:,:)

6 (Optional) Plot the step response of m11.

step(m11)

2-63



2 Model Creation

The step response shows that m11 is an array of six single-input,
single-output (SISO) models.

Note For frequency response data (FRD) models, the array indices can
be followed by the keyword 'frequency' and some expression selecting a
subset of the frequency points as in

sys (outputs,inputs,n1,...,nk,'frequency',SelectedFreqs)

See “Referencing FRD Models Through Frequencies” on page 5-11 for
details on frequency point selection in FRD models.

More About

• “Visualizing Selection of Models From Model Arrays” on page 2-60

Array With Variations in Two Parameters
This example shows how to create a two-dimensional (2-D) array of transfer
functions using for loops. One parameter of the transfer function varies in
each dimension of the array. You can use the technique of this example to
create higher-dimensional arrays with variations of more parameters.
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The second-order single-input, single-output (SISO) transfer function
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depends on two parameters—the damping ratio ζ and natural frequency ω.

If both ζ and ω vary, you obtain multiple transfer functions of the form:
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where ζi and ωj represent different measurements or sampled values of the
variable parameters.

You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

1 (Optional) Preallocate memory for the model array.

You can enhance computation efficiency by preallocating memory. To do
this, create an array of the required size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer
function H. Therefore, this command creates a 3-by-3 array of single-input,
single-output (SISO) zero transfer functions.

2 Create arrays containing the parameter values.

zeta = [0.66,0.71,0.75];
w = [1.0,1.2,1.5];

3 Build the array by looping through all combinations of parameter values.

for i = 1:length(zeta)
for j = 1:length(w)

H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);
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end
end

H is a 3-by-3 array of transfer functions. ζ varies as you move from model
to model along a single column of H. The parameter ω varies as you move
along a single row. Plotting the step response of H shows how the parameter
variation affects the step response.

step(H)

Sample a Tunable (Parametric) Model for Parameter
Studies
This example shows how to sample a parametric model of a second-order filter
across a grid of parameter values using replaceBlock.

1 Create a tunable (parametric) model of the second-order filter:
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where the damping ζ and the natural frequency ωn are the parameters.
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wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn^2,[1 2*zeta*wn wn^2]);

F is a genss model with two tunable Control Design Blocks, the realp
blocks wn and zeta. The blocks wn and zeta have initial values of 3 and
0.8, respectively.

2 Sample F over a 2-by-3 grid of (wn,zeta) values.

Fsample = replaceBlock(F,'wn',[3;5],'zeta',[0.6 0.8 1.0]);

Fsample is 2-by-3 array of state-space models.

3 (Optional) Plot the step response of Fsample.

step(Fsample)
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The step response plot show the variation in the natural frequency and
damping constant across the six models in the array Fsample.

More About

• “Models with Tunable Coefficients” on page 1-19

2-68



References

References
[1] P. Gahinet and L.F. Shampine, "Software for Modeling and Analysis of
Linear Systems with Delays," Proc. American Control Conf., Boston, 2004,
pp. 5600-5605

[2] L.F. Shampine and P. Gahinet, Delay-differential-algebraic Equations in
Control Theory, Applied Numerical Mathematics, 56 (2006), pp. 574-588

2-69



2 Model Creation

2-70



Working with Linear Models

• Chapter 3, “Data Manipulation”
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Data Manipulation

• “Model Properties” on page 3-2

• “Extract Model Coefficients” on page 3-5

• “Attach Metadata to Models” on page 3-9

• “Query Model Characteristics” on page 3-14

• “Customize Model Display” on page 3-17
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Model Properties

In this section...

“About Model Properties” on page 3-2

“Specify Model Properties at Model Creation” on page 3-2

“Examine and Specify Properties of an Existing Model” on page 3-3

About Model Properties
Model properties are data fields for specifying model attributes, such as
coefficients, sampling time, and metadata such as channel names.

For a list of all properties associated with each model type, see the
corresponding reference page.

For help on any particular model property, see the model reference page or
enter help modeltype.propertyname at the command line. For example:

help ss.StateName

Related Examples

• “Examine and Specify Properties of an Existing Model” on page 3-3

• “Specify Model Properties at Model Creation” on page 3-2

Specify Model Properties at Model Creation
This example shows how to specify transfer function model properties when
you create the model. You can use the techniques of this example to access
and set properties of any type of model.

To specify model properties at model creation, use Name,Value pair syntax.
For example, assign a transport delay and an output name to a new transfer
function model.

H = tf(1,[1 10],'ioDelay',6.5,'OutputName','velocity')
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Examine and Specify Properties of an Existing Model
This example shows how to examine and specify properties of an existing ss
model using get, set, and dot notation. You can use the techniques of this
example to access and set properties of any type of model.

1 Load an existing model object.

load PadeApproximation1 sys;

2 Examine the current property values.

get(sys)

This command displays all the properties of sys.

a: [2x2 double]
b: [2x1 double]
c: [0.5000 0.1000]
d: 0
e: []

Scaled: 0
StateName: {2x1 cell}
StateUnit: {2x1 cell}

InternalDelay: 3.4000
InputDelay: 0

OutputDelay: 1.5000
Ts: 0

TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}

InputGroup: [1x1 struct]
OutputName: {''}
OutputUnit: {''}

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: []

3 Specify input delay and channel names.

Using dot notation allows you to directly reference property values.
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sys.InputDelay = 4.2;
sys.InputName = 'thrust';
sys.OutputName = 'velocity';

Alternatively, you can use the set command to change property values.

set(sys,'InputDelay',4.2,'InputName','thrust','OutputName','velocity')

Caution Changing properties such as Ts and TimeUnits can cause
undesirable changes in system behavior. See the property descriptions in
the model reference pages for more information.
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Extract Model Coefficients

In this section...

“Functions for Extracting Model Coefficients” on page 3-5

“Extracting Coefficients of Different Model Type” on page 3-5

“Extract Numeric Model Data and Time Delay” on page 3-6

“Extract Proportional-Integral-Derivative (PID) Gains from Transfer
Function” on page 3-7

Functions for Extracting Model Coefficients
Control System Toolbox includes several commands for extracting model
coefficients such as transfer function numerator and denominator coefficients,
state-space matrices, and proportional-integral-derivative (PID) gains.

The following commands are available for data extraction.

Command Result

tfdata Extract transfer function coefficients

zpkdata Extract zero and pole locations and system gain

ssdata Extract state-space matrices

dssdata Extract descriptor state-space matrices

frdata Extract frequency response data from frd
model

piddata Extract parallel-form
proportional-integral-derivative (PID) data

pidstddata Extract standard-form PID data

get Access all model property values

Extracting Coefficients of Different Model Type
When you use a data extraction command on a model of a different type, the
software computes the coefficients of the target model type. For example, if
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you use zpkdata on a ss model, the software converts the model to zpk form
and returns the zero and pole locations.

Extract Numeric Model Data and Time Delay
This example shows how to extract transfer function numerator and
denominator coefficients using tfdata.

1 Create a first-order plus dead time transfer function model.

H = exp(-2.5*s)/(s+12);

2 Extract the numerator and denominator coefficients.

[num,den] = tfdata(H,'v')

num and den are numerical arrays. Without the 'v' flag, tfdata returns
cell arrays.

Note For SISO transfer function models, you can also extract coefficients
using:

num = H.num{1};
den = H.den{1};

3 Extract the time delay.

a Determine which property of H contains the time delay.

In a SISO tf model, a time delay can be expressed as an input delay, an
output delay, or a transport delay (I/O delay).

get(H)

This command returns:

num: {[0 1]}
den: {[1 12]}

Variable: 's'

3-6



Extract Model Coefficients

ioDelay: 0
InputDelay: 0

OutputDelay: 2.5000
Ts: 0

TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}

InputGroup: [1x1 struct]
OutputName: {''}
OutputUnit: {''}

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: []

The time delay is stored in the OutputDelay property.

b Extract the output delay.

delay = H.OutputDelay;

Extract Proportional-Integral-Derivative (PID) Gains
from Transfer Function
This example shows how to extract PID gains from a transfer function using
piddata.

You can use the same steps to extract PID gains from a model of any type that
represents a PID controller, using piddata or pidstddata.

1 Create a transfer function that represents a PID controller with a
first-order filter on the derivative term.

Czpk = zpk([-6.6,-0.7],[0,-2],0.2)

2 Obtain the PID gains and filter constant.

[Kp,Ki,Kd,Tf] = piddata(Czpk)

This command returns the proportional gain Kp, integral gain Ki,
derivative gain Kd, and derivative filter time constant Tf. Because piddata
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automatically computes the PID controller parameters, you can extract the
PID coefficients without creating a pid model.

More About

• “PID Controllers” on page 1-16
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Attach Metadata to Models

In this section...

“Specify Model Time Units” on page 3-9

“Interconnect Models with Different Time Units” on page 3-10

“Specify Frequency Units of Frequency-Response Data Model” on page 3-10

“Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models” on
page 3-11

“Specify and Select Input and Output Groups” on page 3-12

Specify Model Time Units
This example shows how to specify time units of a transfer function model.

The TimeUnit property of the tf model object specifies units of the time
variable, time delays (for continuous-time models), and the sampling time Ts
(for discrete-time models). The default time units is seconds.

Create a SISO transfer function model sys
s

s s




 

4 2

3 102
with time units

in milliseconds:

num = [4 2];
den = [1 3 10];
sys = tf(num,den,'TimeUnit','milliseconds');

You can specify the time units of any dynamic system in a similar way.

The system time units appear on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system are
used if the time and frequency units in the “Toolbox Preferences Editor” on
page 8-2 are auto.
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Note Changing the TimeUnit property changes the system behavior. If
you want to use different time units without modifying system behavior,
use chgTimeUnit.

Interconnect Models with Different Time Units
This example shows how to interconnect transfer function models with
different time units.

To interconnect models using arithmetic operations or interconnection
commands, the time units of all models must match.

1 Create two transfer function models with time units of milliseconds and
seconds, respectively.

sys1 = tf([1 2],[1 2 3],'TimeUnit','milliseconds');
sys2 = tf([4 2],[1 3 10]);

2 Change the time units of sys2 to milliseconds.

sys2 = chgTimeUnit(sys2,'milliseconds');

3 Connect the systems in parallel.

sys = sys1+sys2;

Specify Frequency Units of Frequency-Response Data
Model
This example shows how to specify units of the frequency points of a
frequency-response data model.

The FrequencyUnit property specifies units of the frequency vector in the
Frequency property of the frd model object. The default frequency units are
rad/TimeUnit, where TimeUnit is the time unit specified in the TimeUnit
property.

Create a SISO frequency-response data model with frequency data in GHz.

load AnalyzerData;
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sys = frd(resp,freq,'FrequencyUnit','GHz');

You can independently specify the units in which you measure the frequency
points and sample time in the FrequencyUnit and TimeUnit properties,
respectively. You can also specify the frequency units of a genfrd in a similar
way.

The frequency units appear on the frequency-domain plots. For multiple
systems with different frequency units, the units of the first system are used
if the frequency units in the “Toolbox Preferences Editor” on page 8-2 is auto.

Note Changing the FrequencyUnit property changes the system behavior. If
you want to use different frequency units without modifying system behavior,
use chgFreqUnit.

Extract Subsystems of Multi-Input, Multi-Output
(MIMO) Models
This example shows how to extract subsystems of a MIMO model using
channel names.

Extracting subsystems is useful when, for example, you want to analyze a
portion of a complex system. Using channel names, you can use MATLAB
indexing to extract all the dynamics relating to a particular channel, without
keeping track of channel order in a complex MIMO model.

1 Create a MIMO transfer function.

G1 = tf(3,[1 10]);
G2 = tf([1 2],[1 0]);
G = [G1,G2];

2 Assign names to the model inputs.

G.InputName = {'temperature';'pressure'};

Because G has two inputs, use a cell array of two strings to specify the
channel names.
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3 Extract the subsystem of G that contains all dynamics from the
'temperature' input to all outputs.

Gt = G(:,'temperature');

Specify and Select Input and Output Groups
This example shows how to specify groups of input and output channels in a
model object and extract subsystems using the groups.

Channel groups are useful for keeping track of inputs and outputs in complex
MIMO models.

1 Create a state-space model with three inputs and four outputs.

H = rss(3,4,3);

2 Group the inputs as follows:

• Inputs 1 and 2 in a group named controls

• Outputs 1 and 3 to a group named temperature

• Outputs 1, 3, and 4 to a group named measurements

H.InputGroup.controls = [1 2];
H.OutputGroup.temperature = [1 3];
H.OutputGroup.measurements = [1 3 4];

InputGroup and OutputGroup are structures. The name of each field in the
structure is the name of the input or output group. The value of each field
is a vector that identifies the channels in that group.

3 Extract the subsystem corresponding to the controls inputs and the
temperatureoutputs.

You can use group names to index into subsystems.

Hc = H('temperature','controls')

Hc is a two-input, three-output ss model containing the I/O channels from
the 'controls' input the 'temperature' outputs.
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The following illustration shows the relationship between H and the
subsystem Hc.

%
�
�

�

�
�
�
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Query Model Characteristics

In this section...

“Query Model Dynamics” on page 3-14

“Query Array Size” on page 3-15

How to query model characteristics such as stability, time domain, and
number of inputs and outputs.

Query Model Dynamics
This example shows how to query model dynamics such as stability, time
domain, and model order.

1 Load the saved state-space model T.

load queryexample.mat T;

2 Query whether T has stable dynamics.

isstable(T)

isstable returns a Boolean value of 1 (true) if all system poles are in the
open left-half plane (for continuous-time models) or inside the open unit
disk (for discrete-time models). Otherwise, isstable returns 0 (false).

3 Query whether T has any time delays.

hasdelay(T)

This command returns 1,which indicates that T has input delay, output
delay, or internal delay. Use get(T) to determine which property of T
holds the time delay.

4 Query whether T is proper.

isproper(T)

This command returns 1 if the system has relative degree ≤ 0.
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5 Query the order of T.

order(T)

For a state-space model, order returns the number of states. For a tf or
zpk model, the order is the number of states required for a state-space
realization of the system.

6 Query whether T is a discrete-time model.

isdt(T)

This command returns 1, indicating that T is a discrete-time model.
Similarly, you can use isct to query whether T is in continuous time.

Query Array Size
This example shows how to query the size of model arrays, including the
number of inputs and outputs and the number of models in an array.

You can also use these commands on individual models.

1 Load a saved model array, sysarr.

load queryexample sysarr

2 Query the array dimensions.

size(sysarr)

This command displays the array size, and the number of inputs, outputs,
and states of the models in the array.

Alternatively, to obtain the array dimensions as a numeric array, use size
with an output argument.

dims = size(sysarr)

This command produces the result:

dims =

3 1 2 4
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The first two entries 3,1 are the number of outputs and inputs, respectively.
The remaining entries 2,4 are the array dimensions.

Tip To query the number of array dimensions, use ndims.

3 Query the number of models in the array.

N = nmodels(sysarr)

Because sysarr is a 2-by-4 array, this command returns a result of 2 × 4 = 8.

4 Query whether the models in sysarr are single-input, single-output (SISO).

issiso(sysarr)

issiso returns a Boolean value of 1 (true) if the models in the array are
SISO, and 0 (false) if the models are not SISO.

5 Query the number of inputs and outputs in the models in the array using
iosize.

ios = iosize(sysarr)

This command returns a numeric array containing the number of outputs
and inputs of the models in the array.

Related Examples

• “Select Models from Array” on page 2-61
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Customize Model Display
How to customize the MATLAB screen display of transfer function models.

In this section...

“Configure Transfer Function Display Variable” on page 3-17

“Configure Display Format of Transfer Function in Factorized Form” on
page 3-18

Configure Transfer Function Display Variable
This example shows how to configure the display variable of transfer function
(tf) models.

You can use the same steps to configure the display variable of transfer
function models in factorized form (zpk models).

By default, tf and zpk models are displayed in terms of s in continuous time
and z in discrete time. Use the Variable property change the display variable
to 'p' (equivalent to 's'), 'q' (equivalent to 'z'), 'z^-1', or 'q^-1'.

1 Create the discrete-time transfer function H z
z

z z
   

 

1

3 22

with a sampling time of 1 s.

H = tf([1 -1],[1 -3 2],0.1)

2 Change the display variable to 'q^-1'.

H.Variable = 'q^-1'

MATLAB computes new coefficients and displays the same transfer
function in terms of the new variable:

Transfer function:
q^-1 - q^-2

-------------------
1 - 3 q^-1 + 2 q^-2
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Sampling time (seconds): 0.1

Tip Alternatively, you can directly create the same transfer function
expressed in terms of 'q^-1'.

H = tf([0 1 -1],[1 -3 2],0.1,'Variable','q^-1');

For the inverse variables 'z^-1' and 'q^-1', tf interprets the numerator and
denominator arrays as coefficients of ascending powers of 'z^-1' or 'q^-1'.

Configure Display Format of Transfer Function in
Factorized Form
This example shows how to configure the display of transfer function models
in factorized form (zpk models).

You can configure the display of the numerator and denominator polynomials
to highlight:

• The numerator and denominator roots

• The natural frequencies and damping ratios of each root

• The time constants and damping ratios of each root

See the DisplayFormat property on the zpk reference page for more
information about these quantities.

1 Create a zpk model having a zero at s = 5, a pole at s = –10, and a pair of
complex poles at s = –2 ± 5i.

H = zpk(5,[-10,-3-5*i,-3+5*i],10)

This command displays the result:

Zero/pole/gain:
10 (s-5)

----------------------
(s+10) (s^2 + 6s + 34)
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The default display format, 'roots', displays the standard factorization
of the numerator and denominator polynomials.

2 Configure the display format to display the natural frequency of each
polynomial root.

Set the DisplayFormat property of H to 'frequency'.

H.DisplayFormat = 'frequency'

This command displays the result:

Zero/pole/gain:
-0.14706 (1-s/5)

-------------------------------------------
(1+s/10) (1 + 1.029(s/5.831) + (s/5.831)^2)

You can read the natural frequencies and damping ratios for each pole
and zero from the display as follows:

• Factors corresponding to real roots are displayed as (1 – s/ω0), where
ω0 is the natural frequency of the root. Thus, for example, the natural
frequency of the zero of H is 5.

• Factors corresponding to complex pairs of roots are displayed as
1 – 2ζ(s/ω0) + (s/ω0)

2, where ω0 is the natural frequency and ζ is the
damping ratio of the root. Thus, for example, the natural frequency of
the complex pole pair is 5.831, and the damping ratio is 1.029/2.

3 Configure the display format to display the time constant of each pole and
zero.

To do this, set the DisplayFormat property of H to 'time constant'.

H.DisplayFormat = 'time constant'

This command displays the result:

-0.14706 (1-0.2s)
-------------------------------------------
(1+0.1s) (1 + 1.029(0.1715s) + (0.1715s)^2)
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You can read the time constants and damping ratios from the display as
follows:

• Factors corresponding to real roots are displayed as (τs), where τ is the
time constant of the root. Thus, for example, the time constant of the
zero of H is 0.2.

• Factors corresponding to complex pairs of roots are displayed as 1 – 2ζ(τs)
+ (τs)2, where τ is the time constant and ζ is the damping ratio of the root.
Thus, for example, the time constant of the complex pole pair is 0.1715,
and the damping ratio is 1.029/2.
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About Model Interconnections
You can use model arithmetic and model interconnection commands to
construct models of control systems. You can conceptualize your control
system as a block diagram containing multiple interconnected components.
You use model arithmetic or interconnection commands to combine models of
each component into a single model representing the entire block diagram.
For example, you can construct a single model that represents an entire
closed-loop control system having a plant, a controller, sensor dynamics, or
other components.

Model interconnection commands also let you combine Numeric LTI models
with Control Design Blocks to create Generalized LTI models that represent
systems with tunable components.
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Catalog of Model Interconnections
Each of the model interconnection commands corresponds to a type of
connection in a block diagram. Many of the commands also correspond
to arithmetic combinations of models. The following table lists the
interconnection commands, the corresponding algebraic expression, and the
corresponding block diagram connection.

Command Arithmetic
Equivalent

Block Diagram Connection

series(H1,H2) H2*H1
%�� �%�

parallel(H1,H2) H1+H2

�
%�

� �
�

%�

parallel(H1,-H2) H1-H2

�
%�

� �
�

%�

feedback(H1,H2) H1/(1+H2*H1) �
%�� �

�

%�

N/A H1/H2 (division)
%�� �%���
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Command Arithmetic
Equivalent

Block Diagram Connection

N/A H1\H2 (left division)
%�� �%���

inv(H1) N/A
� �%���

lft(H1,H2,nu,ny)
— Linear fractional
transformation (LFT)

N/A
%�

%�

��

��

(�

(�

� �
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Build a Model of a Single-Input, Single-Output (SISO)
Feedback Loop

This example shows how to use arithmetic and model connection commands
to combine models representing multiple system components into a single
model representing the entire closed-loop SISO control system.

Construct a model of the following control system, which contains a plant
G(s), a controller C(s), and a representation of sensor dynamics, S(s), in a
single feedback loop. The system also includes a prefilter F(s).

�
�

�������� �
�

	���


���

1 Create model objects representing each of the components.

G = zpk([],[-1,-1],1);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]);
F = tf(1,[1 1]);

In this example, the plant G is a zero-pole-gain (zpk) model with a double
pole at s = –1. C is a PID controller, and F and S are transfer functions.
You can use model arithmetic and interconnection commands on any type
of dynamic system model or static model.

2 Construct the combined controller-plant system L(s) = C(s)G(s).

L = G*C;

When you combine models using the multiplication operator *, the models
are in reverse order compared to the block diagram.
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Tip Alternatively, construct L(s) using the series command:

L = series(C,G);

3 Construct the unfiltered closed-loop response T s
L
LS

  
1

.

You can use model arithmetic to construct T algebraically:

T = L/(1+S*L)

However, arithmetically computing this model duplicates the poles of L.
This duplication inflates the model order and can lead to computational
inaccuracy.

Instead, use feedback to compute the closed-loop model.

T = feedback(ss(L),S);

Converting L to state-space (ss) causes feedback to convert all components
to ss models and return T as a ss model. Converting to ss is not required,
but for complex interconnections with many components, converting to
state-space form yields better numeric accuracy. See “Recommended Model
Type for Building Block Diagrams” on page 4-18 for more information.

4 Combine T with the prefilter transfer function to obtain the entire
closed-loop system response from r to y.

Try = T*F;

Try is a ss object representing the aggregate closed-loop system. Try does
not retain the original data from the combined components G, C, F, and S.

5 (Optional) Plot the step response of the closed-loop system.

When you build models by combining components, you can operate on those
models with Control System Toolbox control design and analysis commands

step(Try)
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Build a Model of a Multi-Input, Multi-Output (MIMO)
Feedback Loop

This example shows how to build a MIMO closed-loop model using feedback.
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Build a Model of a Multi-Loop Control System
This example shows how to combine models to construct an arbitrary block
diagram using connect. The system of this example is a Smith Predictor, the
single-input, single-output (SISO) multi-loop control system illustrated in
the following block diagram.

�
��

&� �

	

)�

*

�

�

�

�

���

� �

��

+�+�

��

��
����

����
����

For more information about the Smith Predictor system, see the Control
System Toolbox demo Control of Processes with Long Dead Time: The Smith
Predictor.

The connect command lets you construct the complex interconnections of this
system. To use connect, you name the input and output channels of the
components of the block diagram. connect joins ports that have the same
name. For example, the following illustration shows how connect joins an
output of model B1 named error with an input of model B2 that has the
same name.
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To build the closed loop model of the Smith Predictor system from ysp to y:

1 Create model objects representing the process model P, the predictor model
Gp, and the delay model Dp.

s = tf('s');

P = exp(-93.9*s) * 5.6/(40.2*s+1);
P.InputName = 'u'; P.OutputName = 'y';

Gp = 5.6/(40.2*s+1);
Gp.InputName = 'u'; Gp.OutputName = 'yp';

Dp = exp(-93.9*s);
Dp.InputName = 'yp'; Dp.OutputName = 'y1';

Use the InputName and OutputName properties to specify signal names
for the input and output of each model. When you connect these models
to build the control system, these names tell connect how the models are
interconnected in your block diagram. Therefore, for example, because P
and Gp receive the same input signal u in the block diagram, assign them
the same InputName, u. Likewise, because the output of Gp is the input of
the delay Dp, set Gp.OutputName and Dp.InputName to yp.
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2 Create models representing the filter F and the PI controller C.

F = 1/(20*s+1);
F.InputName = 'dy'; F.OutputName = 'dp';

C = pidstd(0.574,40.1);
C.Inputname = 'e'; C.OutputName = 'u';

These models also have specified input and output names to enable
connect to combine the models.

3 Create the summing junctions needed to complete the block diagram.

Use the sumblk command to create each summing junction.

sum1 = sumblk('e = ysp - ym');
sum2 = sumblk('ym = yp + dp');
sum3 = sumblk('dy = y - y1');

The argument to sumblk is a formula string that specifies the output signal
and summed input signals. For example, in sum1, the output is the signal
e, which is the difference ysp-ym.

4 Assemble the complete model from ysp to y.

T = connect(P,Gp,Dp,C,F,sum1,sum2,sum3,'ysp','y');

To use connect, list all the models and summing junctions in any order.
connect automatically combines the models and summing junctions by
matching each argument’s output name with another argument’s input
name. The final two arguments to connect specify the input and output
signals of the aggregate model.

Thus, the resulting model T is a ss model with input ysp and output y. T
represents the aggregate multi-loop control structure.
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Build a Model of a Multi-Input, Multi-Output (MIMO)
Control System

This example shows how to construct a model of a MIMO control system
using connect.

Consider the following two-input, two-output control system.

���

���

�� �� �

�
�

�

�

��

��

�

The plant G represents a distillation column with two inputs, reflux L and
boilup V, and two outputs, the concentrations of two chemicals, represented
by the vector signal y = [yD,yB]. The vector setpoint signal r = [rD,rB] represents
the desired concentrations of the two chemicals. The vector error signal e is
input to DM, a static 2-by-2 decoupling matrix. PIL and PIV are independent
PI controllers that control the two inputs of G. For more information about
this system, see the Robust Control Toolbox demo Decoupling Controller for a
Distillation Column.

To create a two-input, two-output model representing this closed-loop control
system:

1 Create a model representing the 2-by-2 plant G.

s = tf('s','TimeUnit','minutes');
G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);
G.InputName = {'L','V'};
G.OutputName = {'yD','yB'};

When you construct the closed-loop model, connect uses the input and
output names to form connections between the block diagram components.
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Therefore, assign names to the inputs and outputs of the transfer function
G.

2 Create a model representing the 2-by-2 decoupling matrix DM.

DM = tf([4.31,-2.51;3.92,-2.97],'TimeUnit','minutes');
DM.u = 'e';
DM.y = {'pL','pV'};

DM.u and DM.y are shorthand for DM.InputName and DM.OutputName,
respectively. Therefore, the above commands assign the names 'pL' and
'pV' to the outputs of DM.

Additionally, when you use a single string to name a vector-valued input or
output, the name is automatically expanded into a vector of the necessary
length. Therefore, the command DM.u = 'e' assigns the names 'e(1)'
and 'e(2)' to the inputs of DM.

3 Create models representing the PI controllers PIL and PIV.

PI_L = pid(1,0.0361,'TimeUnit','minutes');
PI_L.u = 'pL'; PI_L.y = 'L';

PI_V = pid(1,0.0365,'TimeUnit','minutes');
PI_V.u = 'pV'; PI_V.y = 'V';

PI_L and PI_V are pid controller objects. The input and output signals of
each controller are named as in the block diagram.

Tip To create a tunable (genss) model of the control system, use
ltiblock.gain to represent DM and ltiblock.pid to represent PI_L and
PI_V. See the Robust Control Toolbox demo Decoupling Controller for a
Distillation Column for an example.

4 Create the summing junction.

The summing junction produces the error signals e by taking the difference
between r and y. All three signals are vector signals with two values.

Sum = sumblk('e = %r - %y',{'rD','rB'},G.y);
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Sum is the transfer function for the summing junction described by the
formula string 'e = %r - %y'. The alias entries %r and %y in the formula
refer to subsequent arguments to sumblk. Thus, sumblk uses {'rD','rB'}
for %r, and the signal names of G.OutputName for %y. Because %r and %y are
vector signals of length 2, sumblk automatically expands e into the vector
signals {'e(1)','e(2)'}.

Therefore, Sum is the vector summing junction:

e r y

e r y
D D

B B

1

2

   

    .

5 Join all components to construct the closed-loop system from r to y.

CLry = connect(DM,G,PI_L,PI_V,Sum,{'rD','rB'},G.y);

The arguments to connect include all the components of the closed-loop
system, in any order. connect automatically combines the components
using the input and output names to join signals.

The final two arguments to connect specify the output and input signals
of the closed-loop model, respectively. The inputs are the vector setpoint
signals r = [rD,rB]. The outputs are the outputs y = [yD,yB] of the plant G.
Therefore, CLry is a two-input, two-output model.

6 (Optional) Plot the step response of CLry.

step(CLry)
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The step response plot confirms that CLry has the expected inputs and
outputs.
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Results of Connecting Models

In this section...

“Property Inheritance in Connected Models” on page 4-16

“Result When Connecting Different Model Types” on page 4-16

Property Inheritance in Connected Models
When you connect two or more models, the resulting model’s properties are
determined in part by the operation and in part by the properties of the
connected models. Some general rules governing property inheritance are:

• In operations combining discrete-time models, all models must have
identical or unspecified (sys.Ts = -1) sampling times. Models resulting
from such operations inherit the specified sampling time, if there is one.

• All models must have identical TimeUnit properties.

• In general, when you connect two dynamic systems sys1 and sys2 using
operations such as +, *, [,], [;], append, and feedback, the resulting
model inherits its I/O names and I/O groups from sys1 and sys2. However,
conflicting I/O names or I/O groups are not inherited. For example, the
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2
have different InputName property values.

• A model resulting from operations on tf or zpk models inherits its
Variable property value from the operands. Conflicts are resolved
according the following rules:

- For continuous-time models, 'p' has precedence over 's'.

- For discrete-time models, 'q^-1' and 'z^-1' have precedence over 'q'
and 'z', while 'q' has precedence over 'z'.

• Most operations ignore the Notes and UserData properties. These
properties of the resulting model are empty.

Result When Connecting Different Model Types
When you use model interconnection commands to combine models of
different types, the resulting model type is determined by rules internal to the
software. In general:
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• When combining Numeric LTI models other than frd models, the resulting
model is determined by the following order of precedence:

ss > zpk > tf > pid > pidstd

For example, if you combine an ss model, a pid model, and a zpk model,
the result is an ss model.

• Any combination that includes a frequency-response model (frd or genfrd)
results in a frequency-response model.

• Combining numeric models with generalized models or with Control Design
Blocks results in generalized models. For example, if you combine a genss
model with a tf model, the result is a genss model. Likewise, combining a
zpk model with an ltiblock.pid model results in a genss model.

Note The software automatically converts all models to the resulting model
type before performing the connection operation.

For example, consider the following ss model P, ltiblock.tf model F, and
pid model C.

P = ss([-0.8,0.4;0.4,-1.0],[-3.0;1.4],[0.3,0],0);
C = pid(-0.13,-0.61);
F = ltiblock.tf('F',0,1);

The ss model has the highest precedence among Numeric LTI models.
Therefore, combining P and C with any model interconnection command
returns an ss model. For example, entering:

CL = feedback(P*C,1)

returns a state-space model.

Combining the ss model CL with the Control Design Block F returns a
Generalized state-space (genss) model.

CLF = F*CL
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Recommended Model Type for Building Block Diagrams
You can represent block diagram components with any model type. However,
some connection operations convert models to ss form before computing
the combined model. Therefore, working with tf or zpk models causes the
software to perform multiple conversions to and from thess representation.
These conversions can result in high-order polynomials whose evaluation can
be plagued by inaccuracies. Additionally, the tf or zpk representations are
inefficient for manipulating multi-input multi-output (MIMO) systems and
tend to inflate the model order. Therefore, ss or frd models yield the most
accurate numerical results.

For example, load the models Pd and Cd, which are are 9th-order and
2nd-order discrete-time transfer functions, respectively.

load numdemo Pd Cd

Even connecting these two models in series can lead to numerical inaccuracies.
To see this, compute the open-loop transfer function L = Pd*Cd using the
tf, zpk, ss, and frd representations.

Ltf = Pd*Cd;
Lzp = zpk(Pd)*Cd;
Lss = ss(Pd)*Cd;

w = logspace(-1,3,100);
Lfrd = frd(Pd,w)*Cd;

Plot the magnitude of the frequency response to compare the four
representations.

bodemag(Ltf,Lzp,Lss,Lfrd)
legend('tf','zpk','ss','frd')
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The tf representation has lost low-frequency dynamics that are preserved
in the other representations.
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5 Operations on Models

Overview
You can perform basic matrix operations such as addition, multiplication,
or concatenation on models objects or model arrays. Such operations are
"overloaded," which means that they use the same syntax as they do for
matrices, but are adapted to apply to model objects. These overloaded
operations and their interpretation in this context are discussed in this
chapter. You can read about discretization methods in this chapter as well.

These operations can be applied to model objects of different types. As a
result, before discussing operations on LTI models, we discuss model type
precedence and how LTI model properties are inherited when models are
combined using these operations. To read about functions for analyzing LTI
models, see Chapter 6, “Model Analysis Tools”.
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Precedence and Property Inheritance
You can apply operations to LTI models of different types. Operations on
systems of different types work as follows: the resulting type is determined
by the precedence rules, and all operands are first converted to this type
before performing the operation. Operations like addition and commands
like feedback operate on more than one LTI model at a time. If these LTI
models are represented as LTI objects of different types (for example, the first
operand is TF and the second operand is SS), it is not obvious what type (for
example, TF or SS) the resulting model should be. Such type conflicts are
resolved by precedence rules. Specifically, TF, ZPK, SS, and FRD objects are
ranked according to the precedence hierarchy:

FRD > SS > ZPK > TF

Thus ZPK takes precedence over TF, SS takes precedence over both TF and
ZPK, and FRD takes precedence over all three. In other words, any operation
involving two or more LTI models produces:

• An FRD object if at least one operand is an FRD object

• An SS object if no operand is an FRD object and at least one operand
is an SS object

• A ZPK object if no operand is an FRD or SS object and at least one is an
ZPK object

• A TF object only if all operands are TF objects

For example, if sys1 is a transfer function and sys2 is a state-space model,
then the result of their addition

sys = sys1 + sys2

is a state-space model, since state-space models have precedence over transfer
function models.

To supersede the precedence rules and force the result of an operation to be a
given type, for example, a transfer function (TF), you can either

• Convert all operands to TF before performing the operation
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• Convert the result to TF after performing the operation

Suppose, in the above example, you want to compute the transfer function of
sys. You can either use a priori conversion of the second operand

sys = sys1 + tf(sys2);

or a posteriori conversion of the result

sys = tf(sys1 + sys2)

Note These alternatives are not equivalent numerically; computations are
carried out on transfer functions in the first case, and on state-space models
in the second case.

Another issue is property inheritance, that is, how the operand property
values are passed on to the result of the operation. While inheritance is partly
operation-dependent, some general rules are summarized below:

• In operations combining discrete-time LTI models, all models must have
identical or unspecified (sys.Ts = -1) sample times. Models resulting
from such operations inherit the specified sample time, if there is one.

• Most operations ignore the Notes and Userdata properties.

• In general, when two LTI models sys1 and sys2 are combined using
operations such as +, *, [,], [;], append, and feedback, the resulting
model inherits its I/O names and I/O groups from sys1 and sys2. However,
conflicting I/O names or I/O groups are not inherited. For example, the
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2
have different InputName property values.

• A model resulting from operations on TF or ZPK models inherits its
Variable property value from the operands. Conflicts are resolved
according the following rules:

- For continuous-time models, 'p' has precedence over 's'.

- For discrete-time models, 'z^-1' has precedence over 'q' and 'z',
while 'q' has precedence over 'z'.
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Viewing LTI Systems as Matrices
In the frequency domain, an LTI system is represented by the linear
input/output map

y = Hu.

This map is characterized by its transfer matrix H, a function of either the
Laplace or Z-transform variable. The transfer matrix H maps inputs to
outputs, so there are as many columns as inputs and as many rows as outputs.

If you think of LTI systems in terms of (transfer) matrices, certain basic
operations on LTI systems are naturally expressed with a matrix-like syntax.
For example, the parallel connection of two LTI systems sys1 and sys2 can
be expressed as

sys = sys1 + sys2

because parallel connection amounts to adding the transfer matrices.
Similarly, subsystems of a given LTI model sys can be extracted using
matrix-like subscripting. For instance,

sys(3,1:2)

provides the I/O relation between the first two inputs (column indices) and
the third output (row index), which is consistent with

y
y
y

H H
H H
H H
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2

3

1 1 2 1
2 1 2 2
3 1 3 2

⎡

⎣

⎢
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⎤

⎦

⎥
⎥
⎥
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( ) ( )
( ) ( )
( ) ( )

⎡

⎣

⎢
⎢
⎢

, ,
, ,
, ,

⎤⎤

⎦

⎥
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⎥
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⎤

⎦
⎥

u
u

1

2

for y = Hu.
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Data Retrieval
The functions tf, zpk, ss, and frd pack the model data and sample time in a
single LTI object. Conversely, the following commands provide convenient
data retrieval for any type of TF, SS, or ZPK model sys, or FRD model sysfr.

[num,den,Ts] = tfdata(sys) % Ts = sample time
[z,p,k,Ts] = zpkdata(sys)
[a,b,c,d,Ts] = ssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)
[response,frequency,Ts] = frdata(sysfr)

Note that:

• sys can be any type of LTI object, except an FRD model

• sysfr, the input argument to frdata, can only be an FRD model

You can use any variable names you want in the output argument list of
any of these functions.

The output arguments num and den assigned to tfdata, and z and p assigned
to zpkdata, are cell arrays, even in the SISO case. These cell arrays have
as many rows as outputs, as many columns as inputs, and their ijth entry
specifies the transfer function from the jth input to the ith output. For
example,

H = [tf([1 -1],[1 2 10]) , tf(1,[1 0])]

creates the one-output/two-input transfer function

H s
s

s s s
( ) = −

+ +
⎡
⎣⎢

⎤
⎦⎥

1

2 10

1
2

.

Typing

[num,den] = tfdata(H);
num{1,1}, den{1,1}
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displays the coefficients of the numerator and denominator of the first input
channel.

ans =
0 1 -1

ans =
1 2 10

Note that the same result is obtained using dot notation:

H.num{1,1}, H.den{1,1}

To obtain the numerator and denominator of SISO systems directly as row
vectors, use the syntax

[num,den,Ts] = tfdata(sys,'v')

For example, typing

sys = tf([1 3],[1 2 5]);
[num,den] = tfdata(sys,'v')

produces

num =

0 1 3

den =

1 2 5

Similarly,

[z,p,k,Ts] = zpkdata(sys,'v')

returns the zeros, z, and the poles, p, as vectors for SISO systems.
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Extracting and Modifying Subsystems

In this section...

“What is a Subsystem?” on page 5-8

“Basic Subsystem Concepts” on page 5-8

“Referencing FRD Models Through Frequencies” on page 5-11

“Referencing Channels by Name” on page 5-12

“Resizing LTI Systems” on page 5-13

What is a Subsystem?
Subsystems relate subsets of the inputs and outputs of a system. The transfer
matrix of a subsystem is a submatrix of the system transfer matrix.

Basic Subsystem Concepts
For example, if sys is a system with two inputs, three outputs, and I/O relation

y = Hu

then H(3, 1) gives the relation between the first input and third output:

y3 = H(3, 1)u1.

Accordingly, use matrix-like subindexing to extract this subsystem.

SubSys = sys(3,1)

The resulting subsystem SubSys is an LTI model of the same type as sys,
with its sample time, time delay, I/O name, and I/O group property values
inherited from sys.

For example, if sys has an input group named controls consisting of
channels one, two, and three, then SubSys also has an input group named
controls with the first channel of SubSys assigned to it.
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If sys is a state-space model with matrices a, b, c, d, the subsystem sys(3,1)
is a state-space model with data a, b(:,1), c(3,:), d(3,1). Note the
following rules when extracting subystems:

• In the expression sys(3,1), the first index selects the output channel while
the second index selects the input channel.

• When extracting a subsystem from a given state-space model, the resulting
state-space model may not be minimal. Use the command sminreal to
eliminate unnecessary states in the subsystem.

You can use similar syntax to modify the LTI model sys. For example,

sys(3,1) = NewSubSys

redefines the I/O relation between the first input and third output, provided
NewSubSys is a SISO LTI model.

Rules for Modifying LTI Model Subsystems
The following rules apply when modifying LTI model subsystems:

• sys, the LTI model that has had a portion reassigned, retains its original
model type (TF, ZPK, SS, or FRD) regardless of the model type of
NewSubSys.

• Subsystem assignment does not reassign any I/O names or I/O group names
of NewSubSys that are already assigned to NewSubSys.

• Reassigning parts of a MIMO state-space model generally increases its
order.

• If NewSubSys is an FRD model, then sys must also be an FRD model.
Furthermore, their frequencies must match.

Other standard matrix subindexing extends to LTI objects as well. For
example,

sys(3,1:2)

extracts the subsystem mapping the first two inputs to the third output.

sys(:,1)

5-9



5 Operations on Models

selects the first input and all outputs, and

sys([1 3],:)

extracts a subsystem with the same inputs, but only the first and third
outputs.

For example, consider the two-input/two-output transfer function

T s s
s

s s s

( ) = +
−

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
0 1

0

1

2 2

1
2

. .

To extract the transfer function T11(s) from the first input to the first output,
type

T(1,1)

Transfer function:
1

-------
s + 0.1

Next reassign T11(s) to 1/(s + 0.5) and modify the second input channel of
T by typing

T(1,1) = tf(1,[1 0.5]);
T(:,2) = [ 1 ; tf(0.4,[1 0]) ]

Transfer function from input 1 to output...
1

#1: -------
s + 0.5

s - 1
#2: -------------

s^2 + 2 s + 2
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Transfer function from input 2 to output...
#1: 1

0.4
#2: ---

s

Referencing FRD Models Through Frequencies
You can extract subsystems from FRD models, as you do with other LTI
model types, by indexing into input and output (I/O) dimensions. You can also
extract subsystems by indexing into the frequencies of an FRD model.

To index into the frequencies of an FRD model, use the string ’Frequency’
(or any abbreviation, such as, ’freq’, as long as it does not conflict with
existing I/O channel or group names) as a keyword. There are two ways you
can specify FRD models using frequencies:

• Using integers to index into the frequency vector of the FRD model

• Using a Boolean (logical) expression to specify desired frequency points
in an FRD model

For example, if sys is an FRD model with five frequencies, (e.g.,
sys.Frequency=[1 1.1 1.2 1.3 1.4]), then you can create a new FRD
model sys2 by indexing into the frequencies of sys as follows.

sys2 = sys('frequency', 2:3);
sys2.Frequency

ans =
1.1000
1.2000

displays the second and third entries in the frequency vector.

Similarly, you can use logical indexing into the frequencies.

sys2 = sys('frequency',sys.Frequency >1.0 & sys.Frequency <1.15);

sys2.freq
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ans =

1.1000

You can also combine model extraction through frequencies with indexing into
the I/O dimensions. For example, if sys is an FRD model with two inputs,
two outputs, and frequency vector [2.1 4.2 5.3], with sys.Units specified
in rad/s, then

sys2 = sys(1,2,'freq',1)

specifies sys2 as a SISO FRD model, with one frequency data point, 2.1 rad/s.

Referencing Channels by Name
You can also extract subsystems using I/O group or channel names. For
example, if sys has an input group named noise, consisting of channels two,
four, and five, then

sys(1,'noise')

is equivalent to

sys(1,[2 4 5])

Similarly, if pressure is the name assigned to an output channel of the LTI
model sys, then

sys('pressure',1) = tf(1, [1 1])

reassigns the subsystem from the first input of sys to the output labeled
pressure.

You can reference a set of channels by input or output name by using a
cell array of strings for the names. For example, if sys has one output
channel named pressure and one named temperature, then these two output
channels can be referenced using

sys({'pressure','temperature'})

5-12



Extracting and Modifying Subsystems

Resizing LTI Systems
Resizing a system consists of adding or deleting inputs and/or outputs. To
delete the first two inputs, simply type

sys(:,1:2) = []

In deletions, at least one of the row/column indexes should be the colon (:)
selector.

To perform input/output augmentation, you can proceed by concatenation or
subassignment. Given a system sys with a single input, you can add a second
input using

sys = [sys,h];

or, equivalently, using

sys(:,2) = h;

where h is any LTI model with one input, and the same number of outputs
as sys. There is an important difference between these two options: while
concatenation obeys the precedence rules, subsystem assignment does not
alter the model type. So, if sys and h are TF and SS objects, respectively,
the first statement produces a state-space model, and the second statement
produces a transfer function.

For state-space models, both concatenation and subsystem assignment
increase the model order because they assume that sys and h have
independent states. If you intend to keep the same state matrix and only
update the input-to-state or state-to-output relations, use set instead and
modify the corresponding state-space data directly. For example,

sys = ss(a,b1,c,d1)
set(sys,'b',[b1 b2],'d',[d1 d2])

adds a second input to the state-space model sys by appending the B and D
matrices. You should simultaneously modify both matrices with a single set
command. Indeed, the statements

sys.b = [b1 b2]
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and

set(sys,'b',[b1 b2])

cause an error because they create invalid intermediate models in which the
B and D matrices have inconsistent column dimensions.
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Arithmetic Operations on LTI Models

In this section...

“Supported Arithmetic Operations” on page 5-15

“Addition and Subtraction” on page 5-15

“Multiplication” on page 5-17

“Inversion and Related Operations” on page 5-18

“Transposition” on page 5-18

“Pertransposition” on page 5-19

Supported Arithmetic Operations
You can apply almost all arithmetic operations to LTI models, including those
shown below.

Operation Description

+ Addition

- Subtraction

* Multiplication

.* Element-by-element multiplication

/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

' Pertransposition

.' Transposition

^ Powers of an LTI model (as in s^2)

Addition and Subtraction
Adding LTI models is equivalent to connecting them in parallel. Specifically,
the LTI model
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sys = sys1 + sys2

represents the parallel interconnection shown below.

If sys1 and sys2 are two state-space models with data A1, B1, C1, D1 and
A2, B2, C2, D2, the state-space data associated with sys1 + sys2 is

A
A

B
B

C C D D1

2

1

2
1 2 1 2

0
0

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ [ ] +, , , .

Scalar addition is also supported and behaves as follows: if sys1 is MIMO and
sys2 is SISO, sys1 + sys2 produces a system with the same dimensions as
sys1 whose ijth entry is sys1(i,j) + sys2.

Similarly, the subtraction of two LTI models

sys = sys1 - sys2

is depicted by the following block diagram.
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Multiplication
Multiplication of two LTI models connects them in series. Specifically,

sys = sys1 * sys2

returns an LTI model sys for the series interconnection shown below.

Notice the reverse orders of sys1 and sys2 in the multiplication and block
diagram. This is consistent with the way transfer matrices are combined in a
series connection: if sys1 and sys2 have transfer matrices H1 and H2, then

y = H1v = H1(H2u) = (H1 × H2)u.

For state-space models sys1 and sys2 with data A1, B1, C1, D1 and
A2, B2, C2, D2, the state-space data associated with sys1*sys2 is

A B C
A

B D
B

C D C D D1 1 2

2

1 2

2
1 1 2 1 20

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ [ ], , , .
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Finally, if sys1 is MIMO and sys2 is SISO, then sys1*sys2 or sys2*sys1 is
interpreted as an entry-by-entry scalar multiplication and produces a system
with the same dimensions as sys1, whose ijth entry is sys1(i,j)*sys2.

Inversion and Related Operations
Inversion of LTI models amounts to inverting the following input/output
relationship.

y = Hu → u = H-1y.

This operation is defined only for square systems (that is, systems with as
many inputs as outputs) and is performed using

inv(sys)

The resulting inverse model is of the same type as sys. Related operations
include:

• Left division sys1\sys2, which is equivalent to inv(sys1)*sys2

• Right division sys1/sys2, which is equivalent to sys1*inv(sys2)

For a state-space model sys with data A, B, C, D, inv(sys) is defined only
when D is a square invertible matrix, in which case its state-space data is

A–BD–1C, BD–1, –D–1C, D–1.

Transposition
You can transpose an LTI model sys using

sys.'

This is a literal operation with the following effect:

• For TF models (with input arguments, num and den), the cell arrays num
and den are transposed.

• For ZPK models (with input arguments, z, p, and k), the cell arrays, z and
p, and the matrix k are transposed.
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• For SS models (with model data A, B, C, D), transposition produces the
state-space model AT, CT, BT, DT.

• For FRD models (with complex frequency response matrix Response), the
matrix of frequency response data at each frequency is transposed.

Pertransposition
For a continuous-time system with transfer function H(s), the pertransposed
system has the transfer function

G(s) = [H(–s)]T.

The discrete-time counterpart is

G(z) = [H(z–1)]T.

Pertransposition of an LTI model sys is performed using

sys'

You can use pertransposition to obtain the Hermitian (conjugate) transpose
of the frequency response of a given system. The frequency response of
the pertranspose of H(s), G(s) = [H(–s)]T, is the Hermitian transpose of the
frequency response of H(s): G(jw) = H(jw)H.

To obtain the Hermitian transpose of the frequency response of a system sys
over a frequency range specified by the vector w, type

freqresp(sys', w);
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Model Interconnection Functions

In this section...

“Supported Interconnection Functions” on page 5-20

“Concatenation of LTI Models” on page 5-21

“Feedback and Other Interconnection Functions” on page 5-22

Supported Interconnection Functions
You can use the Control System Toolbox model interconnection functions
to help you build models. With these functions, you can perform I/O
concatenation ([,], [;], and append), general parallel and series connections
(parallel and series), and feedback connections (feedback and lft). These
functions are useful to model open- and closed-loop systems.

Interconnection
Operator Description

[,] Concatenates horizontally

[;] Concatenates vertically

append Appends models in a block diagonal configuration

augstate Augments the output by appending states

connect Forms an SS model from a block diagonal LTI object
for an arbitrary interconnection matrix

feedback Forms the feedback interconnection of two models

lft Produces the LFT interconnection (Redheffer Star
product) of two models

parallel Forms the generalized parallel connection of two
models

series Forms the generalized series connection of two models
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Concatenation of LTI Models
LTI model concatenation is done in a manner similar to the way you
concatenate matrices in the MATLAB technical computing environment, using

sys = [sys1 , sys2] % horizontal concatenation
sys = [sys1 ; sys2] % vertical concatenation
sys = append(sys1,sys2) % block diagonal appending

In I/O terms, horizontal and vertical concatenation have the following
block-diagram interpretations (with H1 and H2 denoting the transfer matrices
of sys1 and sys2).

You can use concatenation as an easy way to create MIMO transfer functions
or zero-pole-gain models. For example,

H = [ tf(1,[1 0]) 1 ; 0 tf([1 -1],[1 1]) ]

specifies
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Use

append(sys1,sys2)

to specify the block-decoupled LTI model interconnection.

See append for more information on this function.

Feedback and Other Interconnection Functions
The following LTI model interconnection functions are useful for specifying
closed- and open-loop model configurations:

• feedback puts two LTI models with compatible dimensions in a feedback
configuration.

• series connects two LTI models in series.

• parallel connects two LTI models in parallel.

• lft performs the Redheffer star product on two LTI models.

• connect works with append to apply an arbitrary interconnection scheme
to a set of LTI models.
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For example, if sys1 has m inputs and p outputs, while sys2 has p inputs and
m outputs, then the negative feedback configuration of these two LTI models

is realized with

feedback(sys1,sys2)

This specifies the LTI model with m inputs and p outputs whose I/O map is

I sys sys sys+ ⋅( )−1 2 11 .

See the reference pages online for more information on feedback, series,
parallel, lft, and connect.
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Converting Between Continuous- and Discrete-Time
Representations

In this section...

“Supported Conversion Functions and Methods” on page 5-24

“Zero-Order Hold Conversion Method” on page 5-25

“First-Order Hold Conversion Method” on page 5-27

“Impulse-Invariant Mapping” on page 5-28

“Tustin Approximation” on page 5-32

“Zero-Pole Matching Equivalents” on page 5-35

Supported Conversion Functions and Methods
The function c2d discretizes continuous-time TF, SS, or ZPK models.
Conversely, d2c converts discrete-time TF, SS, or ZPK models to continuous
time. Both c2d and d2d support several discretization and interpolation
methods, as shown in the following table.

Discretization Method Use when:

Zero-order hold (ZOH) You want an exact discretization in
the time domain for staircase inputs.

First-order hold (FOH) You want an exact discretization in
the time domain for piecewise linear
inputs.

Impulse-invariant mapping • You want an exact discretization
in the time domain for impulse
train inputs.

• You do not need exact phase
matching in the frequency
domain.
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Discretization Method Use when:

Tustin approximation • You want good matching in the
frequency domain between the
continuous- and discrete-time
models.

• Your model has important
dynamics near the Nyquist
frequency.

Zero-pole matching equivalents You have a SISO model, and you
want good matching in the frequency
domain between the continuous- and
discrete-time models.

The default syntax performs a ZOH conversion:

sysd = c2d(sysc, Ts); % Ts = sampling period in seconds
sysc = d2c(sysd);

You can specify another method as string input to d2c or c2d:

sysd = c2d(sysc, Ts, 'foh'); % use first-order hold
sysc = d2c(sysd, 'tustin'); % use Tustin approximation

This syntax uses the default options for the specified discretization method.
(See the c2d and d2c reference pages for more detail.) You can specify
different options for discretizing systems with the 'tustin' or 'matched'
methods using c2dOptions or d2cOptions to define the options. For example,
to discretize a system using the Tustin method with a prewarp transformation
at 4.2 rad/s and a sample time of 0.1 s:

opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 4.2);
sysd = c2d(sysc, 0.1, opt);

See c2d and c2dOptions for more information.

Zero-Order Hold Conversion Method
The following block diagram illustrates the zero-order-hold discretization
Hd(z) of a continuous-time linear model H(s)
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The ZOH block generates the continuous-time input signal u(t) by holding
each sample value u(k) constant over one sample period:

u t u k kT t k Ts s( ) = [ ] ≤ ≤ +( ), 1

The signal u(t) is the input to the continuous system H(s). The output y[k]
results from sampling y(t) every Ts seconds.

Conversely, given a discrete system Hd(z), d2c produces a continuous system
H(s). The ZOH discretization of H(s) coincides with Hd(z).

The ZOH discrete-to-continuous conversion has the following limitations:

• d2c cannot convert LTI models with poles at z = 0.

• For discrete-time LTI models having negative real poles, ZOH d2c
conversion produces a continuous system with higher order. The model
order increases because negative real poles in the z domain map to pairs
of complex poles in the s domain.

The next example illustrates the behavior of d2c with real negative poles.
Consider the following discrete-time zpk model, with one real negative pole
at z = –0.5.

hd = zpk([],-0.5,1,0.1)
Zero/pole/gain:

1
-------
(z+0.5)

Sampling time: 0.1
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Use d2c to convert this model to continuous-time with the default ZOH
method:

hc = d2c(hd)

The result is a second-order model:

Zero/pole/gain:
4.621 (s+149.3)

---------------------
(s^2 + 13.86s + 1035)

Discretizing the model again returns the original discrete-time system, up to
canceling the pole/zero pair at z = –0.5:

c2d(hc,0.1)

Zero/pole/gain:
(z+0.5)

---------
(z+0.5)^2

Sampling time: 0.1

ZOH Method for Systems with Time Delays
You can use the ZOH method to discretize SISO or MIMO continuous-time
models with time delays. The ZOH method yields an exact discretization for
systems with I/O delays only (no internal delays).

For more details about how the ZOH method handles systems with time
delays, see “ZOH, FOH, and Impulse-Invariant Methods” in the c2d reference
page .

First-Order Hold Conversion Method
First-order hold (FOH) differs from ZOH by the underlying hold mechanism.
To turn the input samples u[k] into a continuous input u(t), FOH uses linear
interpolation between samples:
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u t u k
t kT

T
u k u k kT t k Ts

s
s s( ) = [ ] +

−
+[ ] − [ ]( ) ≤ ≤ +( )1 1,

This method is generally more accurate than ZOH for systems driven by
smooth inputs. Because of causality constraints, you can use this option only
for c2d conversions and not d2c conversions.

Note This FOH method differs from standard causal FOH and is more
appropriately called triangle approximation (see [2], p. 228). It is also known
as ramp-invariant approximation because it is distortion-free for ramp inputs.

FOH Method for Systems with Time Delays
You can use the FOH method to discretize SISO or MIMO continuous-time
models with time delays. The FOH method handles time delays in the same
way as the ZOH method. See “ZOH Method for Systems with Time Delays” on
page 5-27 and the c2d reference page for more details.

For more details about how the ZOH method handles systems with time
delays, see “ZOH, FOH, and Impulse-Invariant Methods” in the c2d reference
page .

Impulse-Invariant Mapping
The impulse-invariant mapping matches the discretized impulse response to
that of the continuous time system. For example:

n = 1; d = [1 1]; % Simple 1st order continuous system
sc = ss(tf(n, d)); % state space representation
% Convert to discrete system via impulse invariant mapping
sd1 = c2d(sc, 0.01, 'impulse');
impulse(sc,sd1) % Plot both impulse responses
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The impulse response plot shows that the impulse responses match.
Impulse-invariant mapping is therefore ideal when you want the discretized
system to match the time-domain impulse response of the continuous-time
system.

The frequency responses do not match, however. For example:

bode(sc, sd1)
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Impulse-invariant mapping introduces a shift in the DC gain of the discretized
system. In addition, it introduces a phase mismatch at higher frequencies.
The phase mismatch results from alias effects, and this effect becomes more
pronounced as the sampling time increases. For example:

sd2 = c2d(sc, 0.2, 'impulse');
sd3 = c2d(sc, 0.5, 'impulse');
bode(sc, sd1, sd2, sd3)
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While the shift in the DC gain of this system decreases with decreasing
sampling time, the aliasing effects become more pronounced. Because of
aliasing, impulse-invariant mapping is not a good choice if you want to match
the frequency response of the continuous system. In most cases, choose
a bilinear transform (such as “Tustin Approximation” on page 5-32) for
preserving the frequency-domain response of the transformed model.

In general, impulse-invariant discretization does not preserve the DC gain.
For example, consider the continuous-time transfer function:

G s
s ac ( ) =

+
1

.

The DC gain Gc (0) = 1/a. The impulse-invariant discretization of Gc(s) is:

G z
z

z e
d aTs

( ) =
− −
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where Ts is the sampling time. The DC gain of the discretized system is:

G
e

d aTs
1

1

1
( ) =

− −

For further discussion of impulse invariance scaling issues and aliasing,
see [3].

Impulse-Invariant Mapping for Systems with Time Delays
You can use impulse-invariant mapping to discretize SISO or MIMO
continuous-time models with time delay, except that the method does
not support ss models with internal delays. For supported models,
impulse-invariant mapping yields an exact discretization. See the c2d
reference page for more information.

Tustin Approximation
The Tustin or bilinear approximation uses the approximation

z e
sT
sT

sT s

s

s= ≈
+
−

1 2
1 2

/
/

to relate s-domain and z-domain transfer functions. In c2d conversions, the
discretization Hd(z) of a continuous transfer function H(s) is:

H z H s s
T

z
zd

s
( ) = ′( ) ′ = −

+
,

2 1
1

Similarly, the d2c conversion relies on the inverse correspondence

H s H z z
sT
sTd

s

s
( ) = ′( ) ′ =

+
−

,
/
/

1 2
1 2

Use the Tustin discretization method if you need good frequency domain
matching between your continuous-time system and the corresponding
discretized system. ( See “Impulse-Invariant Mapping” on page 5-28.)
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For example, the following demonstration shows that in contrast to
'impulse', the 'tustin' method is free of aliasing effects that depend upon
sampling time:

n = 1; d = [1 1]; % Simple 1st order continuous system
sc = ss(tf(n, d)); % state space representation
% Convert to discrete system with three different sampling times
sd4 = c2d(sc, 0.1, 'tustin');
sd5 = c2d(sc, 0.2, 'tustin');
sd6 = c2d(sc, 0.5, 'tustin');
bode(sc, sd4, sd5, sd6)

Tustin Approximation with Frequency Prewarping
The Tustin approximation with frequency prewarping uses this
transformation of variables:

H z H s s
T

z
zd

s
( ) = ′( ) ′ =

( )
−
+

,
tan /


 2

1
1
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This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the prewarp frequency ω, because of
the following correspondence:

H j H ed
j Ts ( ) = ( )

To use the Tustin approximation with frequency prewarping, use c2dOptions
to specify the prewarp frequency. For example:

n = 1; d = [1 1]; % Simple 1st order continuous system
sc = ss(tf(n, d)); % state space representation

% create a c2dOptions object specifying the Tustin method
% with prewarp frequency 4.2 rad/s
opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 4.2);
sd = c2d(sc, 0.01, opt);

Specifying a PrewarpFrequency of 0 is equivalent to using the Tustin method
with no prewarp. See the c2d and c2dOptions reference pages for more
information about specifying discretization options.

Tustin Approximation for Systems with Time Delays
You can use the Tustin approximation to discretize SISO or MIMO
continuous-time models with time delays. The Tustin approximation yields
an approximate discretization for a system with time delay tau. The integer
portion of the delay, k*Ts, maps to a delay of k sampling periods in the
discretized model. This approach ignores the residual fractional delay, tau
- k*Ts, by default. You can instead approximate the fractional delay by a
Thiran filter using the c2dOptions command.

For example, consider the following transfer function:

H s e
s s

s( ) =
+ +

−0 25
2

10

3 10
. .

To discretize this system using a Thiran filter to approximate a residual
fractional delay, enter:

5-34



Converting Between Continuous- and Discrete-Time Representations

h = tf(10,[1 3 10],'iodelay',0.25); % create transfer function
% define the discretization options
opts = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
hdtust = c2d(h, 0.1, opts);

These commands discretize h with a sample time of 0.1 s, approximating the
residual fractional time delay as a Thiran filter of order up to 3.

For state-space systems, c2d models the Thiran filter as additional states in
the discretized model.

For more details about using the Tustin approximation to discretize systems
with time delays, see “Tustin Approximation and Zero-Pole Matching
Methods” on the c2d reference page. For a discussion of Thiran filters, see
the thiran reference page and [3].

Zero-Pole Matching Equivalents
The method of conversion by computing zero-pole matching equivalents
applies only to SISO systems. The continuous and discretized systems have
matching DC gains. Their poles and zeros are related by the transformation:

z ei
s Ti s=

where:

• zi is the ith pole or zero of the discrete-time system.

• si is the ith pole or zero of the continuous-time system.

• Ts is the sampling time.

See [2] for more details.

Use the zero-pole matching method by specifying the matched method with
c2d, c2dOptions, d2c, or d2cOptions. See the reference pages for those
commands for more information.
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Zero-Pole Matching for Systems with Time Delays
You can use zero-pole matching to discretize SISO continuous-time models
with time delay, except that the method does not support ss models with
internal delays. The zero-pole matching method handles time delays in the
same way as the Tustin approximation. See “Tustin Approximation and
Zero-Pole Matching Methods” on the c2d reference page.
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Resampling of Discrete-Time Models

In this section...

“Available Commands for Resampling Discrete-Time Models” on page 5-37

“Example of Resampling a Discrete-Time Model” on page 5-37

Available Commands for Resampling Discrete-Time
Models
You can resample a discrete-time TF, SS, or ZPK model using the commands
described in the following table.

To... Use the command...

• Downsample a system.

• Upsample a system without any
restriction on the new sampling
time.

d2d

Upsample a system with the highest
accuracy when:
• The new sample time is
integer-value-times faster than
the sample time of the original
model.

• Your new model can have more
states than the original model.

upsample

Example of Resampling a Discrete-Time Model
This example shows how to upsample a system using both the d2d and
upsample commands and compares the results of both to the original system.

1 Create the original system, h1, by typing:

h1 = tf([1 0.4],[1 -0.7],0.3)

This command returns the following result:
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Transfer function:
z + 0.4
-------
z - 0.7

Sampling time: 0.3

The sample time is 0.3 seconds.

2 Create a new system with a sampling time of 0.1 seconds using the d2d
command. Type:

h2 = d2d(h1,0.1)

This command returns the following result:

Transfer function:
z - 0.4769
----------
z - 0.8879

Sampling time: 0.1

The sample time is 0.1 seconds.

3 Create another new system with a sampling time of 0.1 seconds using the
upsample command by typing:

h3 = upsample(h1,3)

This command returns the following result:

Transfer function:
z^3 + 0.4
---------
z^3 - 0.7

Sampling time: 0.1

The sample time is 0.1 seconds and h3 has three times as many poles and
zeros as h1.
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4 Compare the results of the new upsampled systems h2 and h3 to the
original system h1. Use step response and bode plots by typing:

step(h1,'-r',h2,':g',h3,'--b')
figure
bode(h1,'-r',h2,':g',h3,'--b')

The step response plot shows that the upsampled system h3, created using
the upsample command, provides a better match than h2 to the original
system h1. The h3 system matches h1 at multiples of the original sampling
time.
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The bode plot shows that the upsampled system h3, created using the
upsample command, provides an exact match of the original system h1
up to the Nyquist frequency π / Ts0, where Ts0 is the sampling time of
the original system.
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• “General Model Characteristics” on page 6-2

• “Model Dynamics” on page 6-4

• “State-Space Realizations” on page 6-7

• “Analyzing Systems With Time Delays” on page 6-8

• “Sensitivity Analysis” on page 6-16
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6 Model Analysis Tools

General Model Characteristics
General model characteristics include the model type, I/O dimensions, and
continuous or discrete nature. Related commands are listed in the table
below. These commands operate on continuous- or discrete-time LTI models
or arrays of LTI models of any type.

General Model
Characteristics
Commands Description

class Display model type ('tf', 'zpk', 'ss', or 'frd').

hasdelay Test true if LTI model has any type of delay.

isa Test true if LTI model is of specified class.

isct Test true for continuous-time models.

isdt Test true for discrete-time models.

isempty Test true for empty LTI models.

isproper Test true for proper LTI models.

issiso Test true for SISO models.

ndims Display the number of model/array dimensions.

reshape Change the shape of an LTI array.

size Output/input/array dimensions. Used with
special syntax, size also returns the number of
state dimensions for state-space models, and the
number of frequencies in an FRD model.

This example illustrates the use of some of these commands. See the related
reference pages for more details.

H = tf({1 [1 -1]},{[1 0.1] [1 2 10]})

Transfer function from input 1 to output:
1

-------
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s + 0.1

Transfer function from input 2 to output:
s - 1

--------------
s^2 + 2 s + 10

class(H)

ans =
tf

size(H)
Transfer function with 2 input(s) and 1 output(s).

[ny,nu] = size(H) % Note: ny = number of outputs

ny =
1

nu =
2

isct(H) % Is this system continuous?

ans =
1

isdt(H) % Is this system discrete?

ans =
0
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Model Dynamics
You can use functions to determine the system poles, zeros, DC gain, norms,
etc. You can apply these functions to single LTI models or LTI arrays. The
following table gives an overview of these commands.

Model Dynamics

covar Covariance of response to white noise.

damp Natural frequency and damping of system poles.

dcgain Low-frequency (DC) gain.

dsort Sort discrete-time poles by magnitude.

esort Sort continuous-time poles by real part.

norm Norms of LTI systems (H2 and L∞).

pole, eig System poles.

pzmap Pole/zero map.

zero System transmission zeros.

With the exception of the L∞ norm, these commands are not supported for
FRD models.

Here is an example of model analysis using some of these commands.

h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60])

Transfer function:
4 s^3 + 8.4 s^2 + 30.8 s + 60

---------------------------------------
s^4 + 4.12 s^3 + 17.4 s^2 + 30.8 s + 60

pole(h)

ans =
-1.7971 + 2.2137i
-1.7971 - 2.2137i
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-0.2629 + 2.7039i
-0.2629 - 2.7039i

zero(h)
ans =

-0.0500 + 2.7382i
-0.0500 - 2.7382i
-2.0000

dcgain(h)

ans =
1

[ninf,fpeak] = norm(h,inf) % peak gain of freq. response

ninf =
1.3402 % peak gain
fpeak =
1.8537 % frequency where gain peaks

These functions also operate on LTI arrays and return arrays. For example,
the poles of a three dimensional LTI array sysarray are obtained as follows.

sysarray = tf(rss(2,1,1,3))
Model sysarray(:,:,1,1)
=======================
Transfer function:

-0.6201 s - 1.905
---------------------
s^2 + 5.672 s + 7.405

Model sysarray(:,:,2,1)
=======================
Transfer function:

0.4282 s^2 + 0.3706 s + 0.04264
-------------------------------

s^2 + 1.056 s + 0.1719

Model sysarray(:,:,3,1)
=======================
Transfer function:
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0.621 s + 0.7567
---------------------
s^2 + 2.942 s + 2.113

3x1 array of continuous-time transfer functions.
pole(sysarray)
ans(:,:,1) =

-3.6337
-2.0379

ans(:,:,2) =
-0.8549
-0.2011

ans(:,:,3) =
-1.6968
-1.2452
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State-Space Realizations
You can use the following functions to analyze, perform state coordinate
transformations on, and derive canonical state-space realizations for single
state-space LTI models or LTI arrays of state-space models.

State-Space Realizations

canon Canonical state-space realizations.

ctrb Controllability matrix.

ctrbf Controllability staircase form.

gram Controllability and observability gramians.

obsv Observability matrix.

obsvf Observability staircase form.

ss2ss State coordinate transformation.
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Analyzing Systems With Time Delays
You can use the usual analysis commands (step, bode, margin, ...) to
analyze systems with time delays. The software makes no approximations
when performing such analysis.

For example, consider the following control loop, where the plant is modeled
as first-order plus dead time:

You can model the closed-loop system from r to y with the following
commands:

s = tf('s');
P = ss(5*exp(-3.4*s)/(s+1));
C = 0.1 * (1 + 1/(5*s));
T = feedback(P*C,1)

T is a state-space model with an internal delay. For more information about
models with internal delays, see “Closing Feedback Loops with Time Delays”
on page 2-26.

Plot the step response of T:

step(T)
grid, title('Closed-loop step response')
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For more complicated interconnections, you can name the input and output
signals of each block and use connect to automatically take care of the wiring.
Suppose, for example, that you want to add feedforward to the control loop
of the previous model.
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You can derive the corresponding closed-loop model Tff by

F = 0.3/(s+4);
P.InputName = 'u'; P.OutputName = 'y';
C.InputName = 'e'; C.OutputName = 'uc';
F.InputName = 'r'; F.OutputName = 'uf';
Sum1 = sumblk('e','r','y','+-'); % e = r-y
Sum2 = sumblk('u','uf','uc','++'); % u = uf+uc
Tff = connect(P,C,F,Sum1,Sum2,'r','y');

and compare its response with the feedback only design.

step(T,'b',Tff,'r')
legend('No feedforward','Feedforward')
grid
title('Closed-loop step response with and without feedforward')
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The state-space representation keeps track of the internal delays in both
models.

Considerations to Keep in Mind when Analyzing
Systems with Internal Time Delays
The time and frequency responses of delay systems can look odd and
suspicious to those only familiar with delay-free LTI analysis. Time responses
can behave chaotically, Bode plots can exhibit gain oscillations, etc. These are
not software or numerical quirks but real features of such systems. Below are
a few illustrations of these phenomena.

Gain ripple:
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s=tf('s');
G = exp(-5*s)/(s+1);
T = feedback(ss(G),.5);
bodemag(T)

Gain oscillations:

G = ss(1) + 0.5 * exp(-3*s);
bodemag(G)
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Jagged step response:

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)
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Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = ss(1/(s+1)) + exp(-4*s);
T = feedback(1,G);

step(T)
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You can use Control System Toolbox tools to model and analyze these and
other strange-appearing artifacts of internal delays.
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Sensitivity Analysis
Delays are rarely known accurately, so it is often important to understand
how sensitive a control system is to the delay value. Such sensitivity analysis
is easily performed using LTI arrays and the InternalDelay property. For
example, consider this notched PI control system developed in “PI Control
Loop with Dead Time” from the Analyzing Control Systems with Delays demo.

% Create a 3rd-order plant with a PI controller and notch filter.
s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1)
notch = tf([1 0.2 1],[1 .8 1]);
C = 0.05 * (1 + 1/s);
Tnotch = feedback(ss(P*C*notch),1);

Create five models with delay values ranging from 2.0 to 3.0:

tau = linspace(2,3,5); % 5 delay values
Tsens = repsys(Tnotch,[1 1 5]); % 5 copies of Tnotch

% for j=1:5
Tsens(:,:,j).InternalDelay = tau(j); % jth delay value

% -> jth model end
% Use step to create an envelope plot.
step(Tsens)
grid
title('Closed-loop response for 5 delay values between 2.0 and 3.0')
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This plot shows that uncertainty on the delay value has little effect on
closed-loop characteristics. Note that while you can change the values of
internal delays, you cannot change how many there are because this is part of
the model structure. To eliminate some internal delays, set their value to 0
or use pade with order zero:

Tnotch0 = Tnotch;
Tnotch0.InternalDelay = 0;
bode(Tnotch,'b',Tnotch0,'r',{1e-2,3})
grid, legend('Delay = 2.6','No delay','Location','SouthWest')
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Discretization
You can use c2d to discretize continuous-time delay systems. Available
methods include zero-order hold (ZOH), first-order hold (FOH), and Tustin.
For models with internal delays, the ZOH discretization is not always exact,
i.e., the continuous and discretized step responses may not match:

s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1);
Td = c2d(T,1); step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')
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To correct such discretization gaps, reduce the sampling period until the
continuous and discrete responses match closely:

Td = c2d(T,0.05); step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays.
Use faster sampling rate if discretization error is large.

Note that internal delays remain internal in the discretized model and do
not inflate the model order:

order(Td)

6-20



Discretization

ans =

3

For more information about discretizing systems with time delays, see
“Converting Between Continuous- and Discrete-Time Representations” on
page 5-24 and the c2d reference page.
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7 Preliminaries

Terminology
You can use the Control System Toolbox editors to set properties and
preferences in the SISO Design Tool, the LTI Viewer, and in any response
plots that you create from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot.
This includes the following:

• Axes labels, and limits

• Data units and scales

• Plot styles, such as grids, fonts, and axes foreground colors

• Plot characteristics, such as rise time, peak response, and gain and phase
margins

Preferences refers to properties that persist either

• Within a single session for a specific instance of an LTI Viewer or a SISO
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences.
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Property and Preferences Hierarchy
You can use three graphical user interfaces (GUIs) to control over the
visualization of time and frequency plots generated by the toolbox:

• Toolbox Preferences

• Tool Preferences

• Plot Properties

Preferences refer to global options that you can save from session to session
or to any LTI Viewer or SISO Design Tool that you open during a single
session. Properties are options that apply only to the current window. This
section gives an overview of the three GUIs. For more information, see the
following topics:

• Chapter 8, “Setting Toolbox Preferences”

• Chapter 9, “Setting Tool Preferences”

• Chapter 10, “Customizing Response Plot Properties”

Although you can set plot properties in any response plot, you can use the
Toolbox Preferences Editor to set properties for any response plot that you
generate. This figure shows the inheritance hierarchy from toolbox preference
to plot properties.
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Preference and Property Inheritance Hierarchy

You can activate preference and plot editors by doing the following:

• Toolbox preferences — Select Toolbox Preferences under File in either
the LTI Viewer or the SISO Design Tool.

• Tool preferences — Select SISO Tool Preferences under Edit for the
SISO Design Tool and Viewer Preferences under Edit in the LTI Viewer.

• Plot properties — Double-click any Control System Toolbox response plot
or select Properties from the right-click menus.
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Ways to Customize Plots
You can customize your plots by changing plot properties. For example, you
can change the plot units. The following table describes ways that you can
customize plots.

To change plot properties of For more information, see

A single plot, directly from the plot • “Customizing Response Plots
Using the Response Plots
Property Editor” on page 10-3
and “Customizing Response Plots
Using Plot Tools” on page 10-19
for response plots

• Chapter 9, “Setting Tool
Preferences” for LTI Viewer
plots and Graphical Tuning
Window plots

A single plot or many plots,
programmatically from the
command line

“Customizing Response Plots from
the Command Line” on page 10-23

All Control System Toolbox plots
(changes apply globally to all plot
types and persist from session to
session)

“Toolbox Preferences Editor” on page
8-2
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8 Setting Toolbox Preferences

Toolbox Preferences Editor

In this section...

“Overview of the Toolbox Preferences Editor” on page 8-2

“Opening the Toolbox Preferences Editor” on page 8-2

Overview of the Toolbox Preferences Editor
The Toolbox Preferences editor allows you to set plot preferences that will
persist from session to session. This is the highest level shown in “Property
and Preferences Hierarchy” on page 7-3.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences editor, select Toolbox Preferences from
the File menu of the LTI Viewer or the SISO Design Tool. Alternatively,
you can type

ctrlpref

at the MATLAB prompt.
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Control System Toolbox™ Preferences Editor

• “Units Pane” on page 8-4

• “Style Pane” on page 8-7

• “Options Pane” on page 8-8

• “SISO Tool Pane” on page 8-9
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Units Pane

Use the Units pane to set preferences for the following:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative
to the system time units, where TimeUnit is the system time units specified
in the TimeUnit property of the system on frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'
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- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

• Time

The default auto option uses the time units specified in the TimeUnit
property of the system on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

Other Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'
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- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'
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Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots you create. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts— Set the font size, weight (bold), and angle (italic).

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Colors dialog box. See “Select colors” on page
9-13 for more information.
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Options Pane
The Options pane has selections for time responses and frequency responses.
This figure shows the Options pane with default settings.

The following are the available options for the Options pane:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.

- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).
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SISO Tool Pane
The SISO Tool pane has settings for the SISO Design Tool. This figure shows
the SISO Tool pane with default settings.

You can make the following selections:

• Compensator Format— Select the time constant, natural frequency, or
zero/pole/gain format. The time constant format is a factorization of the
compensator transfer function of the form

DC
Tz s

Tp s
×

+( )
+( )

1
1

1

1


where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants,
and Tp1, Tp2, ..., are the pole time constants.

The natural frequency format is

DC
s

s

z

p
×

+( )
+( )

1

1
1

1






8-9



8 Setting Toolbox Preferences

where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the
natural frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z

s p
×

+( )
+( )

1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the
zero and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and
sensor poles and zeros as blue x’s and o’s, respectively. Clear this box to
eliminate the plant’s poles and zeros from the Bode plot. Note that the
compensator poles and zeros (in red) will still appear.
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9 Setting Tool Preferences

Introduction
Both the LTI Viewer and the Graphical Tuning Window have Tool Preferences
Editors. These editors comprise the middle layer of “Property and Preferences
Hierarchy” on page 7-3.

Both editors allow you to set default characteristics for specific instances of
LTI Viewers and Graphical Tuning windows. If you open a new instance of
either, each defaults to the characteristics specified in the Toolbox Preferences
editor.

9-2



LTI Viewer Preferences Editor

LTI Viewer Preferences Editor

In this section...

“Opening the LTI Viewer Preference Editor” on page 9-3

“Units Pane” on page 9-4

“Style Pane” on page 9-6

“Options Pane” on page 9-7

“Parameters Pane” on page 9-8

Opening the LTI Viewer Preference Editor
Select Viewer Preferences under the Edit menu of the LTI Viewer to open
the LTI Viewer Preferences editor, which is a tool for customizing various
LTI Viewer properties, including units, fonts, and various other viewer
characteristics. This figure shows the editor open to its first pane.

• “Units Pane” on page 9-4

• “Style Pane” on page 9-6

• “Options Pane” on page 9-7

• “Parameters Pane” on page 9-8
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Units Pane

You can select the following on the Units pane:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative
to the system time units, where TimeUnit is the system time units specified
in the TimeUnit property of the system on frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'
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- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

• Time

The default auto option uses the time units specified in the TimeUnit
property of the system on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

Other Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'
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- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and
axes foreground colors for all plots in the LTI Viewer. This figure shows the
Style pane.

You have the following choices:

• Grid — Activate grids for all plots in the LTI Viewer

• Fonts— Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
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vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

• If you do not want to specify the RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” on page
9-13 for more information.

Options Pane
The Options pane has selections for time responses and frequency responses.

The following choices are available:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.
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- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

Parameters Pane
Use the Parameters pane, shown below, to specify input vectors for time and
frequency simulation.

The defaults are to generate time and frequency vectors for your plots
automatically. You can, however, override the defaults as follows:

• Time Vector:

- Define stop time — Specify the final time value for your simulation

- Define vector — Specify the time vector manually using equal-sized
time steps

• Frequency Vector:

- Define range — Specify the bandwidth of your response. Whether it’s in
rad/sec or Hz depends on the selection you made in the Units pane.

- Define vector — Specify the vector for your frequency values. Any real,
positive, strictly monotonically increasing vector is valid.
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Graphical Tuning Window Preferences Editor

In this section...

“Opening the Graphical Tuning Window Preferences Editor” on page 9-9

“Units Pane” on page 9-10

“Time Delays Pane” on page 9-11

“Style Pane” on page 9-12

“Options Pane” on page 9-15

“Line Colors Pane” on page 9-16

Opening the Graphical Tuning Window Preferences
Editor
To open the SISO Tool Preferences editor, select SISO Tool Preferences
from the Edit menu of the Graphical Tuning window. This window opens.
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Units Pane

The Units pane has settings for the following units:

• Frequency

The default units are rad/second.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'
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- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Time Delays Pane
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In the Time Delays pane, specify the order for Padé approximations of delays
in your system as either:

• Actual Padé order

• Bandwidth of accuracy (rad/s) — The highest frequency at which the
approximated response matches the actual system. The software computes
and displays the corresponding Padé order.

The following compensator design tools do not support systems with exact
time delays. If your system has exact continuous-time delays, these tools
automatically compute a Padé approximation of the delays. In this case, you
receive a notification.

• Root locus

• Pole-zero

• PID automated tuning

• IMC automated tuning

• LQG automated tuning

• Loop shaping automated tuning

Tip To determine if a certain Padé order gives a good approximation of your
system, use the pade command to approximate your system. Then, compare a
plot of the two systems using the bode command.

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the Graphical Tuning Window. This figure
shows the Style pane.
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Grids Panel
Select the box to activate grids for all plots in the GRAPHICAL Tuning
Window

Fonts Panel
Set the font size, weight (bold), and angle (italic) by using the menus and
check boxes.

Colors Panel
Specify the color vector to use for the axes foreground, which includes the X-Y
axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

Select colors. Click the Select button to open the Select Color window for
the axes foreground.
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You can use this window to choose axes foreground colors without having to
set RGB (red-green-blue) values numerically. To make your selections, click
on the colored rectangles and press OK. If you want a broader range of colors,
click theMore Colors button. This opens the More Colors window, as shown
in the following figure.

Click on the array of color swatches to select a color. Alternatively, click the
HSB tab to use the Hue Saturation Brightness (HSB) color picker. Or, click
the RGB tab to enter numeric RGB values.
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When you select a color, the Preview section of the window changes to
preview your selection. Click OK to accept the choice. Click Reset to reset
the selection.

Options Pane
The Options pane, shown below, has selections for compensator format and
Bode diagrams.

You can make the following selections:

• Compensator Format— Select the time constant, natural frequency, or
zero/pole/gain format. The time constant format is a factorization of the
compensator transfer function of the form

DC
Tz s

Tp s
×

+( )
+( )

1
1

1

1


where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants,
and Tp1, Tp2, ..., are the pole time constants.

The natural frequency format is
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DC
s

s

z

p
×

+( )
+( )

1

1
1

1




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where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the
natural frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z

s p
×

+( )
+( )

1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the
zero and pole locations, respectively.

• Bode Options— By default, the GRAPHICAL Tuning Window shows the
plant and sensor poles and zeros as blue x’s and o’s, respectively. Clear this
check box to eliminate the plant’s poles and zeros from the Bode plot. Note
that the compensator poles and zeros (in red) will still appear.

Line Colors Pane
The Line Colors pane, shown below, has selections for specify the colors of the
lines in the response plots of the Graphical Tuning Window.
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To change the colors of plot lines associated with parts of your model, specify
a three-element vector to represent red, green, and blue (RGB) values. Vector
element values can range from 0 to 1.

If you do not want to specify the RGB values numerically, click the Select
button to open the Select Color window. See “Select colors” on page 9-13
for more information.
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10 Customizing Response Plot Properties

Introduction
The lowest level of the “Property and Preferences Hierarchy” on page 7-3 is
setting response plot properties. This means that any property you set for a
given plot will only affect that plot.
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Customizing Response Plots Using the Response Plots
Property Editor

In this section...

“Opening the Property Editor” on page 10-3

“Overview of Response Plots Property Editor” on page 10-4

“Labels Pane” on page 10-6

“Limits Pane” on page 10-6

“Units Pane” on page 10-7

“Style Pane” on page 10-16

“Options Pane” on page 10-17

“Editing Subplots Using the Property Editor” on page 10-18

Opening the Property Editor
After you create a response plot, there are two ways to open the Property
Editor:

• Double-click in the plot region

• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using these
commands.

load ltiexamples
step(sys_dc)

This creates a step plot. Select Properties from the right-click menu. Note
that when you open the Property Editor, a set of black squares appear
around the step response, as this figure shows:
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SISO System Step Response

Overview of Response Plots Property Editor
This figure shows the Property Editor dialog box for a step response.
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The Property Editor for Step Response

In general, you can change the following properties of response plots. Note
that only the Labels and Limits panes are available when using the
Property Editor with Simulink® Design Optimization™ software.

• Titles and X- and Y-labels in the Labels pane.

• Numerical ranges of the X and Y axes in the Limits pane.

• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, as is the case with step responses, the
Property Editor will display that no units are available for the selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold and
italics, and change the axes foreground color

• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc.
Plot options change with each plot response type. The Property Editor
displays only the options that make sense for the selected response plot.
For example, phase and gain margins are not available for step responses.

As you make changes in the Property Editor, they display immediately in the
response plot. Conversely, if you make changes in a plot using right-click
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menus, the Property Editor for that plot automatically updates. The Property
Editor and its associated plot are dynamically linked.

Labels Pane
To specify new text for plot titles and axis labels, type the new string in
the field next to the label you want to change. Note that the label changes
immediately as you type, so you can see how the new text looks as you are
typing.

Limits Pane
Default values for the axes limits make sure that the maximum and minimum
x and y values are displayed. If you want to override the default settings,
change the values in the Limits fields. The Auto-Scale box automatically
clears if you click a different field. The new limits appear immediately in
the response plot.

To reestablish the default values, select the Auto-Scale box again.
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Units Pane
You can use the Units pane to change units in your response plot. The
contents of this pane depend on the response plot associated with the editor.

The following table lists the options available for the response objects. Use
the menus to toggle between units.
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Optional Unit Conversions for Response Plots

Response Plot Unit Conversions

Bode and
Bode Magnitude

• Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Frequency scale is logarithmic or linear.

• Magnitude in decibels (dB) or the absolute
value

• Phase in degrees or radians

Impulse • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

Nichols Chart • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Phase in degrees or radians

Nyquist Diagram • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

Pole/Zero Map • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

• Frequency
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

Singular Values • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'
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Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Frequency scale is logarithmic or linear.

• Magnitude in decibels or the absolute value
using logarithmic or linear scale

Step • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'
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Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for response plots.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts— Set the font size, weight (bold), and angle (italic) for fonts used in
response plot titles, X/Y-labels, tick labels, and I/O-names.

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Color dialog box. See “Select colors” on page
9-13 for more information.
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Options Pane
The Options pane allows you to customize response characteristics for plots.
Each response plot has its own set of characteristics and optional settings; the
table below lists them. Use the check boxes to activate the feature and the
fields to specify rise or settling time percentages.

Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram and Bode
Magnitude

Select lower magnitude limit
Adjust phase offsets to keep phase close to a
particular value, within a range of ±180º, at a
given frequency.
Unwrap phase (default is unwrapped)

Impulse Show settling time within xx% (specify the
percentage)
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Response Characteristic Options for Response Plots (Continued)

Plot Customizable Feature

Nichols Chart Select lower magnitude limit
Adjust phase offsets to keep phase close to a
particular value, within a range of ±180º, at a
given frequency.
Unwrap phase (default is unwrapped)

Nyquist Diagram None

Pole/Zero Map None

Sigma None

Step Show settling time within xx% (specify the
percentage)
Show rise time from xx to yy% (specify the
percentages)

Editing Subplots Using the Property Editor
If you create more than one plot in a single figure window, you can edit each
plot individually. For example, the following code creates a figure with two
plots, a step and an impulse response with two randomly selected systems:

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot
to activate the Property Editor. You will see a set of small black squares
appear around the step response, indicating that it is the active plot for the
editor. To switch to the lower (impulse response) plot, just click once in the
impulse response plot region. The set of black squares switches to the impulse
response, and the Property Editor updates as well.
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Customizing Response Plots Using Plot Tools

In this section...

“Properties You Can Customize Using Plot Tools” on page 10-19

“Opening and Working with Plot Tools” on page 10-20

“Example of Changing Line Color Using Plot Tools” on page 10-20

Properties You Can Customize Using Plot Tools
The following table shows the plot properties you can customize using plot
tools.

For... You can customize the following properties:

Responses • System name

• Line color

• Line style

• Line width

• Marker type

For SISO systems, theses changes apply to a single plot
line or an array of plot lines representing the system on one
axis. For MIMO systems, these changes apply to all of the
plotted lines representing the system on multiple axis.

Plot axes • Title

• X-label

• Y-label

Figures • Figure name

• Colormap

• Figure color
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Note To make other changes to response plots, see “Customizing Response
Plots Using the Response Plots Property Editor” on page 10-3 and
“Customizing Response Plots from the Command Line” on page 10-23.

Opening and Working with Plot Tools
See the following documentation for information about how to open and work
with Plot Tools and the Plot Tools Property Editor:

• “Working in Plot Edit Mode” in the MATLAB documentation.

• “The Property Editor” in the MATLAB documentation.

Example of Changing Line Color Using Plot Tools
To change the line color of a MIMO system plot:

1 Create a step response plot of a MIMO system by typing

sys_mimo=rss(3,3,3);
stepplot(sys_mimo)

2 In the figure window, select View > Property Editor.

This action opens the Plot Tools Property Editor.

3 Click the plot line in any of the nine axis.

This action selects the response for the sys_mimo system and updates the
Plot Tools Property Editor to show the available editable properties for
the response.
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Note The Plot Tools Property Editor applies changes to the response of
the MIMO system. Any change you make applies to all of the plotted lines
in the figure.
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Tip You can also change the properties of the response using the right-click
menu while in plot edit mode.

4 In the Property Editor – Waveform pane, select the color red.

This action changes the color of the response that represents the MIMO
system to red.

10-22



Customizing Response Plots from the Command Line

Customizing Response Plots from the Command Line

In this section...

“Overview of Customizing Plots from the Command Line” on page 10-23

“Obtaining Plot Handles” on page 10-26

“Obtaining Plot Options Handles” on page 10-27

“Examples of Customizing Plots from the Command Line” on page 10-30

“Properties and Values Reference” on page 10-33

“Property Organization Reference” on page 10-47

Overview of Customizing Plots from the Command
Line

• “When to Customize Plots from the Command Line” on page 10-23

• “How to Customize Plots from the Command Line” on page 10-23

• “Example of Changing Bode Plot Units from the Command Line” on page
10-25

When to Customize Plots from the Command Line
You can customize any response plot from the command line. The command
line is the most efficient way to customize a large number of plots. For
example, if you have a batch job that produces many plots, you can change the
x-axis units automatically for all the plot with just a few lines of code.

How to Customize Plots from the Command Line
You can use the Control System Toolbox application program interface (API)
to customize plotting options for response plots from the command line.
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Note This section assumes some very basic familiarity with Handle
Graphics® and object-oriented concepts, namely, classes, objects, and Handle
Graphics handles. See “MATLAB Classes” and Handle Graphics Objects in
the MATLAB online documentation for more information.

To customize plots from the command line:

1 Obtain the plot handle, which is an identifier for the plot, using the API’s
plotting syntax.

For example,

h=stepplot(sys)

returns the plot handle h for the step plot.

For more information on obtaining plot handles, see “Obtaining Plot
Handles” on page 10-26.

2 Obtain the plot options handle, which is an identifier for all settable plot
options. To get a plot options handle for a given plot, type

p=getoptions(h);

p is the plot options handle for plot handle h.

For more information on obtaining plot options handles, see “Obtaining
Plot Options Handles” on page 10-27.

3 Use setoptions, along with the plot handle and the plot options handle, to
access and modify many plot options.

Note You can also use setoptions to customize plots using property/value
pairs instead of the plot options handle. Using property/value pairs shortens
the procedure to one line of code.
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Example of Changing Bode Plot Units from the Command Line
You can change of the following plot from rad/s to Hz.

s = tf('s');
sys= 1/(s+1);
h= bodeplot(sys);

To change the units to Hz, type the following:

p = getoptions(h);
p.FreqUnits = 'Hz';
setoptions(h,p)

The units for the x-axis are now in Hz.
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Note You can also change the plot units to Hz using property/value pairs
by typing

setoptions(h,'FreqUnits','Hz');

For more examples of customizing plots from the command line, see
“Examples of Customizing Plots from the Command Line” on page 10-30.

Obtaining Plot Handles
To programmatically interact with response plot, you need the plot handle.
This handle is an identifier to the response plot object. Because the Control
System Toolbox plotting commands, bode, rlocus, etc., all use the plot handle
internally, this API provides a set of commands that explicitly return the
handle to your response plot. These functions all end with "plot," which makes
them easy to identify. This table lists the functions.
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Functions That Return the Plot Handle

Function Plot

bodeplot Bode magnitude and phase

hsvplot Hankel singular values

impulseplot Impulse response

initialplot Initial condition

iopzplot Pole/zero maps for input/output pairs

lsimplot Time response to arbitrary inputs

nicholsplot Nichols chart

nyquistplot Nyquist

pzplot Pole/zero

rlocusplot Root locus

sigmaplot Singular values of the frequency response

stepplot Step response

To get a plot handle for any response plot, use the functions from the table.
For example,

h = bodeplot(sys)

returns plot handle h (it also renders the Bode plot). Once you have this
handle, you can modify the plot properties using the setoptions and
getoptions methods of the plot object, in this case, a Bode plot handle.

Obtaining Plot Options Handles

• “Overview of Plot Options Handles” on page 10-28

• “Retrieving a Handle” on page 10-28

• “Creating a Handle” on page 10-28

• “Which Properties Can You Modify?” on page 10-29
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Overview of Plot Options Handles
Once you have the plot handle, you need the plot options handle, which is an
identifier for all the settable plot properties for a given response plot. There
are two ways to create a plot options handle:

• Retrieving a Handle — Use getoptions to get the handle.

• Creating a Handle — Use <responseplot>options to instantiate a handle.
See Functions for Creating Plot Options Handles on page 10-29 for a
complete list.

Retrieving a Handle
The getoptions function retrieves a plot options handle from a plot handle.

p=getoptions(h) % Returns plot options handle p for plot handle h.

If you specify a property name as an input argument, getoptions returns the
property value associated with the property name.

property_value=getoptions(h,PropertyName) % Returns a property
% value.

Creating a Handle
You can create a default plot options handle by using functions in the form of

<responseplot>options

For example,

p=bodeoptions;

instantiates a handle for Bode plots. See “Properties and Values Reference”
on page 10-33 for a list of default values.

If you want to set the default values to the Control System Toolbox default
values, pass cstprefs to the function. For example,

p = bodeoptions('cstprefs');
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set the Bode plot property/value pairs to the Control System Toolbox default
values.

This table lists the functions that create a plot options handle.

Functions for Creating Plot Options Handles

Function Type of Plot Options Handle Created

bodeoptions Bode phase and magnitude

hsvoptions Hankel singular values

nicholsoptions Nichols plot

nyquistoptions Nyquist plot

pzoptions Pole/zero plot

sigmaoptions Sigma (singular values) plot

timeoptions Time response (impulse, step, etc.)

Which Properties Can You Modify?
Use

help <responseplot>options

to see a list of available property value pairs that you can modify. For example,

help bodeoptions

You can modify any of these parameters using setoptions. The next topic
provides examples of modifying various response plots.

See “Properties and Values Reference” on page 10-33 for a complete list of
property/value pairs for response plots.
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Examples of Customizing Plots from the Command
Line

• “Manipulating Plot Options Handles” on page 10-30

• “Changing Plot Units” on page 10-30

• “Create Plots Using Existing Plot Options Handle” on page 10-31

• “Creating a Default Plot Options Handle” on page 10-32

• “Using Dot Notation Like a Structure” on page 10-32

• “Setting Property Pairs in setoptions” on page 10-33

Manipulating Plot Options Handles
There are two fundamental ways to manipulate plot option handles:

• Dot notation — Treat the handle like a MATLAB structure.

• Property value pairs — Specify property/value pairs explicitly as input
arguments to setoptions.

For some examples, both dot notation and property/value pairs approaches
are shown. For all examples, use

sys=tf(1,[1 1])

for the system.

Changing Plot Units
Change the frequency units of a Bode plot from rad/s to Hz.

h = bodeplot(sys);
p = getoptions(h);
p.FreqUnits = 'Hz'
setoptions(h,p)

or, for the last three lines, substitute

setoptions(h,'FreqUnits','Hz')
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Create Plots Using Existing Plot Options Handle
You can use an existing plot options handle to customize a second plot:

h1 = bodeplot(sys);
p1 = getoptions(h1);
h2 = bodeplot(sys,p1);

or

h1 = bodeplot(sys);
h2 = bodeplot(sys2);
setoptions(h2,getoptions(h1))
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Creating a Default Plot Options Handle
Instantiate a plot options handle with this code.

p = bodeoptions;

Change the frequency units and apply the changes to sys.

p.FreqUnits ='Hz';
h = bodeplot(sys,p);

Using Dot Notation Like a Structure
You can always use dot notation to assign values to properties.

h1 = bodeplot(sys)
p1 = getoptions(h1)
p1.FreqUnits = Hz'
p1.Title.String = 'My Title';
setoptions(h1,p1)
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Setting Property Pairs in setoptions
Instead of using dot notation, specify frequency units as property/value pairs
in setoptions.

h1 = bodeplot(sys)
setoptions(h1,'FreqUnits','Hz')

Verify that the units have changed from rad/s to Hz.

getoptions(h1,'FreqUnits') % Returns frequency units for h1.

ans =

Hz

Properties and Values Reference

• “Property/Value Pairs Common to All Response Plots” on page 10-33

• “Bode Plots” on page 10-38

• “Hankel Singular Values” on page 10-40

• “Nichols Plots” on page 10-40

• “Nyquist Charts” on page 10-42

• “Pole/Zero Maps” on page 10-43

• “Sigma Plots” on page 10-45

• “Time Response Plots” on page 10-46

Property/Value Pairs Common to All Response Plots
The following tables discuss property/value pairs common to all response plots.

Title

Property
Default
Value Description

Title.String none String

Title.FontSize 8 Double
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Title (Continued)

Property
Default
Value Description

Title.FontWeight normal [light | normal | demi |
bode]

Title.FontAngle normal [normal | italic | oblique]

Title.Color [0 0 0] 1-by-3 RGB vector

X Label

Property
Default
Value Description

XLabel.String none String

Xlabel.FontSize 8 Double

Xlabel.FontWeight normal [light | normal | demi |
bode]

XLabel.FontAngle normal [normal | italic | oblique]

Xlabel.Color [0 0 0] 1-by-3 RGB vector

Y Label

Property Default Value Description

YLabel.String none String

Ylabel.FontSize 8 Double

Ylabel.FontWeight normal [light | normal | demi |
bode]

10-34



Customizing Response Plots from the Command Line

Y Label (Continued)

Property Default Value Description

YLabel.FontAngle normal [normal | italic |
oblique]

Ylabel.Color [0 0 0] 1-by-3 RGB vector

Tick Label

Property Default Value Description

TickLabel.FontSize 8 Double

TickLabel.FontWeight normal [light | normal | demo |
bode]

TickLabel.FontAngle normal [normal | italic |
oblique]

Ticklabel.Color [0 0 0] 1-by-3 RGB vector

Grid and Axis Limits

Property
Default
Value Description

grid off [on | off]

Xlim {[]} A cell array of 1-by-2 doubles that specifies the
x-axis limits when XLimMode is set to manual.
When XLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of columns (i.e., number of system
inputs) for the plot. The 1-by-2 doubles must be a
strictly increasing pair [xmin, xmax].
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Grid and Axis Limits (Continued)

Property
Default
Value Description

XLimMode {auto} A cell array of strings [auto | manual] that
specifies the x-axis limits mode. When XLimMode
is set to manual the limits are set to the values
specified in XLim. When XLimMode is scalar, scalar
expansion is applied; otherwise the length of the
cell array must equal the number of columns (i.e.,
number of system inputs) for the plot.

YLim {[]} A cell array of 1-by-2 doubles specifies the y-axis
limits when YLimMode is set to manual. When
YLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of rows (i.e., number of system
outputs) for the plot. The 1-by-2 doubles must be
a strictly increasing pair [ymin, ymax].

YLimMode {auto} A cell array of strings [auto | manual] that
specifies the y-axis limits mode. When YLimMode
is set to manual the limits are set to the values
specified in YLim. When YLimMode is scalar,
scalar expansion is applied; otherwise the length
of the cell array must equal the number of rows
(i.e., number of system outputs) for the plot.

I/O Grouping

Property Default Value Description

IOGrouping none [none | inputs | outputs | all]
Specifies input/output groupings for
responses.
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Input Labels

Property
Default
Value Description

InputLabels.FontSize 8 Double

InputLabels.FontWeight normal [light | normal | demi
| bode]

InputLabels.FontAngle normal [normal | italic |
oblique]

InputLabels.Color [0 0 0] 1-by-3 RGB vector

Output Labels

Property
Default
Value Description

OutputLabel.FontSize 8 Double

OutputLabels.FontWeight normal [light | normal | demi
| bode]

OutputLabels.FontAngle normal [normal | italic |
oblique]

OutputLabels.Color [0 0 0] 1-by-3 RGB vector

10-37



10 Customizing Response Plot Properties

Input/Output Visible

Property Default Value Description

InputVisible {on} [on | off]
A cell array that specifies the
visibility of each input channel.
If the value is a scalar, scalar
expansion is applied.

OutputVisible {on} [on | off]
A cell array that specifies the
visibility of each output channel.
If the value is a scalar, scalar
expansion is applied.

Bode Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'
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Property Default Value Description

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [db | abs]

MagScale linear [linear | log]

PhaseUnits deg [rad | deg]

PhaseWrapping off [on | off]

MagVisible on [on | off]

PhaseVisible on [on | off]

MagLowerLimMode auto [auto | manual]
Enables a manual lower magnitude limit
specification by MagLowerLim.

MagLowerLim 0 Double
Specifies the lower magnitude limit when
MagLowerLimMode is set to manual.
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Property Default Value Description

PhaseMatching off [on | off]
Enables adjusting phase effects for phase
response.

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double

Hankel Singular Values

Property Default Value Description

Yscale linear [linear | log]

AbsTol 0 Double
See hsvd and stabsep for details.

RelTol 1*e-08 Double
See hsvd and stabsep for details.

Offset 1*e-08 Double
See hsvd and stabsep for details.

Nichols Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'
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Property Default Value Description

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

MagLowerLimMode auto [auto | manual]

MagLowerLim 0 double

PhaseMatching off [on | off]

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double
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Nyquist Charts

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'
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Property Default Value Description

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

ShowFullContour on [on | off]

Pole/Zero Maps

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'
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Property Default Value Description

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

TimeUnits seconds
Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'
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Sigma Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'
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Property Default Value Description

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [dB | abs]

MagScale linear [linear | log]

Time Response Plots

Property Default Value Description

Normalize off [on | off]
Normalize the y-scale of all
responses in the plot.

SettleTimeThreshold 0.02 Double
Specifies the settling time
threshold. 0.02 = 2%.

RiseTimeLimits [0.1, 0.9] 1-by-2 double
Specifies the limits used to define
the rise time. [0.1, 0.9] is 10%
to 90%.

TimeUnits seconds
Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'
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Property Default Value Description

• 'months'

• 'years'

Property Organization Reference
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Customizing Plots Inside the SISO Design Tool

In this section...

“Overview of Customizing SISO Design Tool Plots” on page 10-48

“Root Locus Property Editor” on page 10-48

“Open-Loop Bode Property Editor” on page 10-52

“Open-Loop Nichols Property Editor” on page 10-55

“Prefilter Bode Property Editor” on page 10-57

Overview of Customizing SISO Design Tool Plots
Customizing plots inside the SISO Design Tool is similar to how you
customize any response plot. The following property editors are specific to
the SISO Design Tool:

• Root Locus Property Editor

• Open-Loop Bode Property Editor

• Open-Loop Nichols Property Editor

• Prefilter Bode Property Editor

You can use each of these property editors to create the customized plots
within the SISO Design tool.

Root Locus Property Editor
There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu

• Select Root Locus and then Properties from Edit in the menu bar

This figure shows the Property Editor: Root Locus window.
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• “Labels Pane” on page 10-49

• “Limits Pane” on page 10-50

• “Options Pane” on page 10-51

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The root locus plot
automatically updates.
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Limits Pane
The SISO Design Tool specifies default values for the real and imaginary
axes ranges to make sure that all the poles and zeros in your model appear
in the root locus plot. Use the Limits pane, shown below, to override the
default settings.

To change the limits, specify the new limits in the real and imaginary axes
Limits fields. The Auto-Scale check box automatically clears once you click
in a different field. Your root locus diagram updates immediately. If you want
to reapply the default limits, select the Auto-Scale check boxes again.

The Limit Stack pane provides support for storing and retrieving custom limit
specifications. There are four buttons available:

— Add the current limits to the stack

— Retrieve the previous stack entry
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— Retrieve the next stack entry

— Remove the current limits from the stack

Using these buttons, you can store and retrieve any number of saved custom
axes limits.

Options Pane
The Options pane contains settings for adding a grid and changing the plot’s
aspect ratio.

Select Show grid to display a grid on the root locus. If you have damping
ratio constraints on your root locus, selecting Display damping ratios as
% peak overshoot displays the damping ratio values along the grid lines.
This figure shows both options activated for an imported model, Gservo. If
you want to verify these settings, type

load ltiexamples

at the MATLAB prompt and import Gservo from the workspace into your
SISO Design Tool.
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The numbers displayed on the root locus gridlines are the damping ratios as a
percentage of the overshoot values.

If you select the Equal check box in the Aspect Ratio pane, the x and y-axes
are set to equal limit values.

Open-Loop Bode Property Editor
As is the case with the root locus Property Editor, there are three ways to
open the Bode diagram property editor:

• Double-click in the Bode magnitude or phase plot away from the curve.
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• Select Properties from the right-click menu.

• Select Open-Loop Bode and then Properties from Edit in the menu bar.

This figure shows the Property Editor: Open-Loop Bode editor.

• “Labels Pane” on page 10-53

• “Limits Pane” on page 10-54

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Bode diagram
automatically updates.
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Limits Pane
You can use the Limits pane to override the default limits for the frequency,
magnitude, and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for frequency,
magnitude, and phase. The Auto-Scale check box automatically deactivates
once you click in a different field. The Bode diagram updates immediately.
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To restore the default settings, select the Auto-Scale boxes again.

Open-Loop Nichols Property Editor
As is the case with the root locus Property Editor, there are three ways to
open the Nichols plot property editor:

• Double-click in the Nichols plot away from the curve.

• Select Properties from the right-click menu.

• Select Open-Loop Nichols and then Properties from Edit in the menu
bar.

This figure shows the Property Editor: Open-Loop Nichols editor.

• “Labels Pane” on page 10-55

• “Limits Pane” on page 10-56

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Nichols plot
automatically updates.
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Limits Pane
You can use the Limits pane to override the default limits for the frequency,
magnitude, and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for open-loop
phase and/or gain. The Auto-Scale check box automatically deactivates once
you click in a different field. The Nichols plot updates immediately.

To restore the default settings, select the Auto-Scale boxes again.
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Prefilter Bode Property Editor
The Prefilter Bode Property editor is identical to the Open-Loop Bode
diagram property editor. There are three ways to open the prefilter editor:

• Double-click in the prefilter Bode magnitude or phase plot away from the
curve.

• Select Properties from the right-click menu.

• Select Prefilter Bode and then Properties from Edit in the menu bar.

See “Open-Loop Bode Property Editor” on page 10-52 for a description of the
features of this editor.
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Yaw Damper for a 747 Jet Transport

In this section...

“Overview of this Case Study” on page 11-2

“Creating the Jet Model” on page 11-2

“Computing Open-Loop Eigenvalues” on page 11-4

“Open-Loop Analysis” on page 11-5

“Root Locus Design” on page 11-8

“Washout Filter Design” on page 11-13

Overview of this Case Study
This case study demonstrates the tools for classical control design by stepping
through the design of a yaw damper for a 747® jet transport aircraft.

Creating the Jet Model
The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A=[-.0558 -.9968 .0802 .0415;
.598 -.115 -.0318 0;

-3.05 .388 -.4650 0;
0 0.0805 1 0];

B=[ .00729 0;
-0.475 0.00775;
0.153 0.143;
0 0];

C=[0 1 0 0;
0 0 0 1];

D=[0 0;
0 0];

sys = ss(A,B,C,D);
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The following commands specify this state-space model as an LTI object and
attach names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...
'inputname',inputs,...
'outputname',outputs);

You can display the LTI model sys by typing sys. This command produces
the following result.

a =

beta yaw roll phi

beta -0.0558 -0.9968 0.0802 0.0415

yaw 0.598 -0.115 -0.0318 0

roll -3.05 0.388 -0.465 0

phi 0 0.0805 1 0

b =

rudder aileron

beta 0.00729 0

yaw -0.475 0.00775

roll 0.153 0.143

phi 0 0

c =

beta yaw roll phi

yaw 0 1 0 0

bank angle 0 0 0 1

d =

rudder aileron

yaw 0 0

bank angle 0 0

Continuous-time model.
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The model has two inputs and two outputs. The units are radians for beta
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and
roll (roll rate). The rudder and aileron deflections are in radians as well.

Computing Open-Loop Eigenvalues
Compute the open-loop eigenvalues and plot them in the s-plane.

damp(sys)

Eigenvalue Damping Freq. (rad/s)

-7.28e-003 1.00e+000 7.28e-003
-5.63e-001 1.00e+000 5.63e-001
-3.29e-002 + 9.47e-001i 3.48e-002 9.47e-001
-3.29e-002 - 9.47e-001i 3.48e-002 9.47e-001

pzmap(sys)
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This model has one pair of lightly damped poles. They correspond to what is
called the "Dutch roll mode."

Suppose you want to design a compensator that increases the damping of
these poles, so that the resulting complex poles have a damping ratio ζ > 0.35
with natural frequency ωn < 1 rad/sec. You can do this using the Control
System Toolbox analysis tools.

Open-Loop Analysis
First, perform some open-loop analysis to determine possible control
strategies. Start with the time response (you could use step or impulse here).

impulse(sys)

The impulse response confirms that the system is lightly damped. But the
time frame is much too long because the passengers and the pilot are more
concerned about the behavior during the first few seconds rather than the
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first few minutes. Next look at the response over a smaller time frame of
20 seconds.

impulse(sys,20)

Look at the plot from aileron (input 2) to bank angle (output 2). To show only
this plot, right-click and choose I/O Selector, then click on the (2,2) entry.
The I/O Selector should look like this.

The new figure is shown below.
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The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is
turning in response to an aileron impulse. This behavior will prove important
later in this case study.

Typically, yaw dampers are designed using the yaw rate as sensed output and
the rudder as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.
bode(sys11)
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From this Bode diagram, you can see that the rudder has significant effect
around the lightly damped Dutch roll mode (that is, near ω = 1 rad/sec).

Root Locus Design
A reasonable design objective is to provide a damping ration ζ > 0.35 with
a natural frequency ωn < 1.0 rad/sec. Since the simplest compensator is a
static gain, first try to determine appropriate gain values using the root
locus technique.

% Plot the root locus for the rudder to yaw channel
rlocus(sys11)
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This is the root locus for negative feedback and shows that the system goes
unstable almost immediately. If, instead, you use positive feedback, you may
be able to keep the system stable.

rlocus(-sys11)
sgrid
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This looks better. By using simple feedback, you can achieve a damping ratio
of ζ > 0.45. Click on the blue curve and move the data marker to track the
gain and damping values. To achieve a 0.45 damping ratio, the gain should be
about 2.85. This figure shows the data marker with similar values.
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Next, close the SISO feedback loop.

K = 2.85;
cl11 = feedback(sys11,-K); % Note: feedback assumes negative

% feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and
compare it to the open-loop impulse response.

impulse(sys11,'b--',cl11,'r',20)
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The closed-loop response settles quickly and does not oscillate much,
particularly when compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from
the aileron looks. The feedback loop involves input 1 and output 1 of the
plant (use feedback with index vectors selecting this input/output pair). At
the MATLAB prompt, type

cloop = feedback(sys,-K,1,1);
damp(cloop) % closed-loop poles

Eigenvalue Damping Freq. (rad/s)

-3.42e-001 1.00e+000 3.42e-001
-2.97e-001 + 6.06e-001i 4.40e-001 6.75e-001
-2.97e-001 - 6.06e-001i 4.40e-001 6.75e-001
-1.05e+000 1.00e+000 1.05e+000

Plot the MIMO impulse response.
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impulse(sys,'b--',cloop,'r',20)

The yaw rate response is now well damped, but look at the plot from aileron
(input 2) to bank angle (output 2). When you move the aileron, the system
no longer continues to bank like a normal aircraft. You have over-stabilized
the spiral mode. The spiral mode is typically a very slow mode and allows the
aircraft to bank and turn without constant aileron input. Pilots are used
to this behavior and will not like your design if it does not allow them to
fly normally. This design has moved the spiral mode so that it has a faster
frequency.

Washout Filter Design
What you need to do is make sure the spiral mode does not move further into
the left-half plane when you close the loop. One way flight control designers
have addressed this problem is to use a washout filter kH(s) where

H s
s

s
( ) =

+
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The washout filter places a zero at the origin, which constrains the spiral
mode pole to remain near the origin. We choose α = 0.2 for a time constant of
five seconds and use the root locus technique to select the filter gain H. First
specify the fixed part s/(s + α) of the washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between
input 1 and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)
sgrid

Create and drag a data marker around the upper curve to locate the maximum
damping, which is about ζ = 0.3.
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This figure shows a data marker at the maximum damping ratio; the gain
is approximately 2.07.

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;
cl11 = feedback(oloop,-K);
impulse(cl11,20)
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The response settles nicely but has less damping than your previous design.
Finally, you can verify that the washout filter has fixed the spiral mode
problem. First form the complete washout filter kH(s) (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and
simulate the impulse response.

cloop = feedback(sys,WOF,1,1);

% Final closed-loop impulse response
impulse(sys,'b--',cloop,'r',20)
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The bank angle response (output 2) due to an aileron impulse (input 2) now
has the desired nearly constant behavior over this short time frame. To
inspect the response more closely, use the I/O Selector in the right-click menu
to select the (2,2) I/O pair.
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Although you did not quite meet the damping specification, your design has
increased the damping of the system substantially and now allows the pilot
to fly the aircraft normally.
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Hard-Disk Read/Write Head Controller

In this section...

“Overview of this Case Study” on page 11-19

“Creating the Read/Write Head Model” on page 11-19

“Model Discretization” on page 11-20

“Adding a Compensator Gain” on page 11-22

“Adding a Lead Network” on page 11-23

“Design Analysis” on page 11-26

Overview of this Case Study

This case study demonstrates the ability to perform classical digital control
design by going through the design of a computer hard-disk read/write head
position controller.

Creating the Read/Write Head Model
Using Newton’s law, a simple model for the read/write head is the differential
equation
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J
d

dt
C

d
dt

K K ii
2

2
 

+ + =

where J is the inertia of the head assembly, C is the viscous damping
coefficient of the bearings, K is the return spring constant, Ki is the motor
torque constant, θ is the angular position of the head, and i is the input
current.

Taking the Laplace transform, the transfer function from i to θ is

H s
K

Js Cs K
i( ) =

+ +2

Using the values J = 0.01 kg m2, C = 0.004 Nm/(rad/sec), K = 10 Nm/rad, and
Ki = 0.05 Nm/rad, form the transfer function description of this system. At
the MATLAB prompt, type

J = .01; C = 0.004; K = 10; Ki = .05;
num = Ki;
den = [J C K];
H = tf(num,den)

These commands produce the following result.

Transfer function:
0.05

-----------------------
0.01 s^2 + 0.004 s + 10

Model Discretization
The task here is to design a digital controller that provides accurate
positioning of the read/write head. The design is performed in the digital
domain. First, discretize the continuous plant. Because our plant will be
equipped with a digital-to-analog converter (with a zero-order hold) connected
to its input, use c2d with the 'zoh' discretization method. Type

Ts = 0.005; % sampling period = 0.005 second
Hd = c2d(H,Ts,'zoh')
Transfer function:
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6.233e-05 z + 6.229e-05
-----------------------
z^2 - 1.973 z + 0.998

Sampling time: 0.005

You can compare the Bode plots of the continuous and discretized models with

bodeplot(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type

step(Hd)
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The system oscillates quite a bit. This is probably due to very light damping.
You can check this by computing the open-loop poles. Type

% Open-loop poles of discrete model

damp(Hd)

Eigenvalue Magnitude Equiv. Damping Equiv. Freq.

9.87e-01 + 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

9.87e-01 - 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

The poles have very light equivalent damping and are near the unit circle.
You need to design a compensator that increases the damping of these poles.

Adding a Compensator Gain
The simplest compensator is just a gain, so try the root locus technique to
select an appropriate feedback gain.

rlocus(Hd)
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As shown in the root locus, the poles quickly leave the unit circle and go
unstable. You need to introduce some lead or a compensator with some zeros.

Adding a Lead Network
Try the compensator

D z
z
z b

( ) = +
+


with α = −0.85 and b = 0.

The corresponding open-loop model
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is obtained by the series connection

D = zpk(0.85,0,1,Ts)
oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bodeplot(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the
compensator is the solid line.
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The plot above shows that the compensator has shifted up the phase plot
(added lead) in the frequency range ω > 10 rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)
zgrid

Open the Property Editor by right-clicking in the plot away from the curve.
On the Limits page, set the x- and y-axis limits from -1 to 1.01. This figure
shows the result.

This time, the poles stay within the unit circle for some time (the lines drawn
by zgrid show the damping ratios from ζ = 0 to 1 in steps of 0.1). Use a data
marker to find the point on the curve where the gain equals 4.111e+03. This
figure shows the data marker at the correct location.
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Design Analysis
To analyze this design, form the closed-loop system and plot the closed-loop
step response.

K = 4.11e+03;
cloop = feedback(oloop,K);
step(cloop)
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This response depends on your closed loop set point. The one shown here
is relatively fast and settles in about 0.07 seconds. Therefore, this closed
loop disk drive system has a seek time of about 0.07 seconds. This is slow by
today’s standards, but you also started with a very lightly damped system.

Now look at the robustness of your design. The most common classical
robustness criteria are the gain and phase margins. Use the function margin
to determine these margins. With output arguments, margin returns the
gain and phase margins as well as the corresponding crossover frequencies.
Without output argument, margin plots the Bode response and displays the
margins graphically.

To compute the margins, first form the unity-feedback open loop by connecting
the compensator D(z), plant model, and feedback gain k in series.

olk = K * oloop;
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Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);
Margins = [Gm Wcg Pm Wcp]
Margins =

3.7987 296.7978 43.2031 106.2462

To obtain the gain margin in dB, type

20*log10(Gm)
ans =

11.5926

You can also display the margins graphically by typing

margin(olk)

The command produces the plot shown below.
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This design is robust and can tolerate a 11 dB gain increase or a 40 degree
phase lag in the open-loop system without going unstable. By continuing this
design process, you may be able to find a compensator that stabilizes the
open-loop system and allows you to reduce the seek time.
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LQG Regulation: Rolling Mill Example

In this section...

“Overview of this Case Study” on page 11-30

“Process and Disturbance Models” on page 11-30

“LQG Design for the x-Axis” on page 11-33

“LQG Design for the y-Axis” on page 11-40

“Cross-Coupling Between Axes” on page 11-42

“MIMO LQG Design” on page 11-45

Overview of this Case Study
This case study demonstrates the use of the LQG design tools in a process
control application. The goal is to regulate the horizontal and vertical
thickness of the beam produced by a hot steel rolling mill. This example is
adapted from [1]. The full plant model is MIMO and the example shows
the advantage of direct MIMO LQG design over separate SISO designs for
each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models
The rolling mill is used to shape rectangular beams of hot metal. The desired
outgoing shape is sketched below.
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This shape is impressed by two pairs of rolling cylinders (one per axis)
positioned by hydraulic actuators. The gap between the two cylinders is called
the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes
within the quality assurance tolerances. Variations in output thickness can
arise from the following:

• Variations in the thickness/hardness of the incoming beam

• Eccentricity in the rolling cylinders
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Feedback control is necessary to reduce the effect of these disturbances.
Because the roll gap cannot be measured close to the mill stand, the rolling
force is used instead for feedback.

The input thickness disturbance is modeled as a low pass filter driven by
white noise. The eccentricity disturbance is approximately periodic and its
frequency is a function of the rolling speed. A reasonable model for this
disturbance is a second-order bandpass filter driven by white noise.

This leads to the following generic model for each axis of the rolling process.

The measured rolling force variation f is a combination of the incremental
force delivered by the hydraulic actuator and of the disturbance forces due to
eccentricity and input thickness variation. Note that:
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• The outputs of H(s), Fe(s), and Fi(s) are the incremental forces delivered
by each component.

• An increase in hydraulic or eccentricity force reduces the output thickness
gap δ.

• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

Model Data for the x-Axis
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Model Data for the y-Axis
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LQG Design for the x-Axis
As a first approximation, ignore the cross-coupling between the x- and y-axes
and treat each axis independently. That is, design one SISO LQG regulator
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for each axis. The design objective is to reduce the thickness variations δx and
δy due to eccentricity and input thickness disturbances.

Start with the x-axis. First specify the model components as transfer function
objects.

% Hydraulic actuator (with input "u-x")
Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

% Input thickness/hardness disturbance model
Fix = tf(1e4,[1 0.05],'inputn','w-ix')

% Rolling eccentricity model
Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap
gx = 1e-6;

Next build the open-loop model shown in “Process and Disturbance Models”
on page 11-30. You could use the function connect for this purpose, but it is
easier to build this model by elementary append and series connections.

% I/O map from inputs to forces f1 and f2
Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs "x-gap" and "x-force"
Px = [-gx gx;1 1] * Px

% Give names to the outputs:
set(Px,'outputn',{'x-gap' 'x-force'})

Note To obtain minimal state-space realizations, always convert transfer
function models to state space before connecting them. Combining transfer
functions and then converting to state space may produce nonminimal
state-space models.

The variable Px now contains an open-loop state-space model complete with
input and output names.
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Px.inputname

ans =
'u-x'
'w-ex'
'w-ix'

Px.outputname

ans =
'x-gap'
'x-force'

The second output 'x-force' is the rolling force measurement. The LQG
regulator will use this measurement to drive the hydraulic actuator and
reduce disturbance-induced thickness variations δx.

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance
measure of the form

J u q ru dtx x x( ) = +{ }∞
∫  2 2
0

2 Design a Kalman filter that estimates the state vector given the force
measurements 'x-force'.

The performance criterion J(ux) penalizes low and high frequencies equally.
Because low-frequency variations are of primary concern, eliminate the
high-frequency content of δx with the low-pass filter 30/(s + 30) and use the
filtered value in the LQ performance criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px
Pxdes = append(lpf,1) * Px
set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4
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kx = lqry(Pxdes(1,1),1,1e-4)

Note lqry expects all inputs to be commands and all outputs to be
measurements. Here the command 'u-x' and the measurement 'x-gap*'
(filtered gap) are the first input and first output of Pxdes. Hence, use the
syntax Pxdes(1,1) to specify just the I/O relation between 'u-x' and
'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process
noise

w
w

wx
ex

ix
=

⎡

⎣
⎢

⎤

⎦
⎥

has unit covariance by construction. Set the measurement noise covariance
to 1000 to limit the high frequency gain, and keep only the measured output
'x-force' for estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

Finally, connect the state-feedback gain kx and state estimator estx to form
the LQG regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the x−axis.

Let’s look at the regulator Bode response between 0.1 and 1000 rad/sec.

h = bodeplot(Regx,{0.1 1000})
setoptions(h,'PhaseMatching','on')
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The phase response has an interesting physical interpretation. First,
consider an increase in input thickness. This low-frequency disturbance
boosts both output thickness and rolling force. Because the regulator phase
is approximately 0o at low frequencies, the feedback loop then adequately
reacts by increasing the hydraulic force to offset the thickness increase. Now
consider the effect of eccentricity. Eccentricity causes fluctuations in the roll
gap (gap between the rolling cylinders). When the roll gap is minimal, the
rolling force increases and the beam thickness diminishes. The hydraulic
force must then be reduced (negative force feedback) to restore the desired
thickness. This is exactly what the LQG regulator does as its phase drops to
-180o near the natural frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to
thickness gap. Use feedback to close the loop. To help specify the feedback
connection, look at the I/O names of the plant Px and regulator Regx.

Px.inputname
ans =

'u-x'
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'w-ex'
'w-ix'

Regx.outputname
ans =

'u-x'

Px.outputname
ans =

'x-gap'
'x-force'

Regx.inputname
ans =

'x-force'

This indicates that you must connect the first input and second output of Px
to the regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from
disturbance to thickness gap.

h = bodeplot(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})
setoptions(h,'PhaseMatching','on')
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The dashed lines show the open-loop response. Note that the peak gain
of the eccentricity-to-gap response and the low-frequency gain of the
input-thickness-to-gap response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to
the white noise inputs wex and wix. Choose dt=0.01 as sampling period for
the simulation, and derive equivalent discrete white noise inputs for this
sampling rate.

dt = 0.01
t = 0:dt:50 % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].
% Equivalent discrete covariance is 1/dt
wx = sqrt(1/dt) * randn(2,length(t))

lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)
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Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The dotted lines correspond to the open-loop response. In this simulation, the
LQG regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis
The LQG design for the y-axis (regulation of the y thickness) follows the exact
same steps as for the x-axis.

% Specify model components
Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y')
Fiy = tf(2e4,[1 0.05],'inputn','w-iy')
Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')
gy = 0.5e-6 % force-to-gap gain

% Build open-loop model
Py = append([ss(Hy) Fey],Fiy)
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Py = [-gy gy;1 1] * Py
set(Py,'outputn',{'y-gap' 'y-force'})

% State-feedback gain design
Pydes = append(lpf,1) * Py % Add low-freq. weigthing
set(Pydes,'outputn',{'y-gap*' 'y-force'})
ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design
esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop
Regy = lqgreg(esty,ky)
cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input
disturbances.

dt = 0.01
t = 0:dt:50
wy = sqrt(1/dt) * randn(2,length(t))

lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

Right-click on the plot that appears and select Show Input to turn off the
display of the input.
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The dotted lines correspond to the open-loop response. The simulation results
are comparable to those for the x-axis.

Cross-Coupling Between Axes
The x/y thickness regulation, is a MIMO problem. So far you have treated
each axis separately and closed one SISO loop at a time. This design is valid
as long as the two axes are fairly decoupled. Unfortunately, this rolling mill
process exhibits some degree of cross-coupling between axes. Physically, an
increase in hydraulic force along the x-axis compresses the material, which
in turn boosts the repelling force on the y-axis cylinders. The result is an
increase in y-thickness and an equivalent (relative) decrease in hydraulic
force along the y-axis.

The figure below shows the coupling.
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Accordingly, the thickness gaps and rolling forces are related to the outputs

x xf, , of the x- and y-axis models by
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
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Let’s see how the previous "decoupled" LQG design fares when cross-coupling
is taken into account. To build the two-axes model, shown above, append the
models Px and Py for the x- and y-axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and
thickness gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])
P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;
CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]
Pc = CCmat * P
Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2 % first two inputs of Pc are the commands
feedout = 3:4 % last two outputs of Pc are the measurements
cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

You are now ready to simulate the open- and closed-loop responses to the
driving white noises wx (for the x-axis) and wy (for the y-axis).
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wxy = [wx ; wy]
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The response reveals a severe deterioration in regulation performance along
the x-axis (the peak thickness variation is about four times larger than in the
simulation without cross-coupling). Hence, designing for one loop at a time is
inadequate for this level of cross-coupling, and you must perform a joint-axis
MIMO design to correctly handle coupling effects.

MIMO LQG Design
Start with the complete two-axis state-panespace model Pc derived in
“Cross-Coupling Between Axes” on page 11-42. The model inputs and outputs
are

Pc.inputname
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ans =
'u-x'
'u-y'
'w-ex'
'w-ix'
'w_ey'
'w_iy'

P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap'
outputs to penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two
commands and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2)) % Kalman estimator

RegMIMO = lqgreg(est,k) % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans =
'x-force'
'y-force'

RegMIMO.outputname
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ans =
'u-x'
'u-y'

Plot its singular value response (principal gains).

sigma(RegMIMO)

Next, plot the open- and closed-loop time responses to the white noise inputs
(using the MIMO LQG regulator for feedback).

% Form the closed-loop model
cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)
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Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The MIMO design is a clear improvement over the separate SISO designs for
each axis. In particular, the level of x/y thickness variation is now comparable
to that obtained in the decoupled case. This example illustrates the benefits
of direct MIMO design for multivariable systems.
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Kalman Filtering

In this section...

“Overview of this Case Study” on page 11-49

“Discrete Kalman Filter” on page 11-50

“Steady-State Design” on page 11-51

“Time-Varying Kalman Filter” on page 11-57

“Time-Varying Design” on page 11-58

“References” on page 11-62

Overview of this Case Study
This final case study illustrates Kalman filter design and simulation. Both
steady-state and time-varying Kalman filters are considered.

Consider the discrete plant

x n Ax n B u n w n

y n Cx n

+[ ] = [ ] + [ ] + [ ]
[ ] = [ ]
1 ( )

with additive Gaussian noise w[n] on the input u[n] and data

A = [1.1269 -0.4940 0.1129
1.0000 0 0

0 1.0000 0];

B = [-0.3832
0.5919
0.5191];

C = [1 0 0];

Our goal is to design a Kalman filter that estimates the output y[n] given the
inputs u[n] and the noisy output measurements
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y n Cx n v nv [ ] = [ ] + [ ]

where v[n] is some Gaussian white noise.

Discrete Kalman Filter
The equations of the steady-state Kalman filter for this problem are given as
follows.

Measurement update

ˆ | ˆ | ( ˆ | )x n n x n n M y n Cx n nv[ ] = −[ ] + [ ] − −[ ]1 1

Time update

ˆ | ˆ |x n n Ax n n Bu n+[ ] = [ ] + [ ]1

In these equations:

• ˆ |x n n −[ ]1 is the estimate of x[n] given past measurements up to yv[n − 1]

• ˆ |x n n[ ] is the updated estimate based on the last measurement yv[n]

Given the current estimate ˆ |x n n[ ] , the time update predicts the state value
at the next sample n + 1 (one-step-ahead predictor). The measurement update
then adjusts this prediction based on the new measurement yv[n + 1]. The
correction term is a function of the innovation, that is, the discrepancy.

y n Cx n nv +[ ] − +⎡⎣ ⎤⎦1 1ˆ

between the measured and predicted values of y[n + 1]. The innovation gain
M is chosen to minimize the steady-state covariance of the estimation error
given the noise covariances

E w n w n Q E v n v n R N E w n v nT T T[ ] [ ]( ) = [ ] [ ]( ) = = [ ] [ ]( ) = 0
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You can combine the time and measurement update equations into one
state-space model (the Kalman filter).

ˆ ˆ

ˆ

x n n A I MC x n n B AM
u n
y n

y n n

v
+⎡⎣ ⎤⎦ = −( ) −⎡⎣ ⎤⎦ + [ ] [ ]

[ ]
⎡

⎣
⎢

⎤

⎦
⎥

⎡⎣ ⎤⎦ =

1 1

CC I MC x n n CMy nv−( ) −⎡⎣ ⎤⎦ + [ ]ˆ 1

This filter generates an optimal estimate ˆ |y n n[ ] of y[n]. Note that the filter
state is ˆ |x n n −[ ]1 .

Steady-State Design
You can design the steady-state Kalman filter described above with the
function kalman. First specify the plant model with the process noise.

x n Ax n Bu n Bw n
y n Cx n
+[ ] = [ ] + [ ] + [ ]
[ ] = [ ]
1 (

(
state equation)
measuremment equation)

This is done by

% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...

'outputname','y');

Assuming that Q = R = 1, you can now design the discrete Kalman filter by

Q = 1; R = 1;
[kalmf,L,P,M] = kalman(Plant,Q,R);

This returns a state-space model kalmf of the filter as well as the innovation
gain

M

M =

0.3798
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0.0817
-0.2570

The inputs of kalmf are u and yv, and its outputs are the plant output and

state estimates y y n ne = [ ]ˆ | and ˆ |x n n[ ] .

Because you are interested in the output estimate ye, keep only the first
output of kalmf. Type

kalmf = kalmf(1,:);
kalmf
a =

x1_e x2_e x3_e
x1_e 0.7683 -0.494 0.1129
x2_e 0.6202 0 0
x3_e -0.08173 1 0

b =
u y

x1_e -0.3832 0.3586
x2_e 0.5919 0.3798
x3_e 0.5191 0.08173

c =
x1_e x2_e x3_e

y_e 0.6202 0 0

d =
u y

y_e 0 0.3798

Input groups:
Name Channels
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KnownInput 1
Measurement 2

Output groups:
Name Channels

OutputEstimate 1

Sampling time: unspecified
Discrete-time model.

To see how the filter works, generate some input data and random noise and
compare the filtered response ye with the true response y. You can either
generate each response separately, or generate both together. To simulate
each response separately, use lsim with the plant alone first, and then with
the plant and filter hooked up together. The joint simulation alternative
is detailed next.

The block diagram below shows how to generate both true and filtered outputs.

You can construct a state-space model of this block diagram with the functions
parallel and feedback. First build a complete plant model with u, w, v as
inputs y and yv (measurements) as outputs.

a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0;0 0 1];
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},...
'outputname',{'y' 'yv'});
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Then use parallel to form the following parallel connection.

sys = parallel(P,kalmf,1,1,[],[])

Finally, close the sensor loop by connecting the plant output yv to the filter
input yv with positive feedback.

% Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)
% Delete yv from I/O list
SimModel = SimModel([1 3],[1 2 3])

The resulting simulation model has w, v, u as inputs and y, ye as outputs.

SimModel.inputname

ans =
'w'
'v'
'u'

SimModel.outputname

ans =
'y'
'y_e'

11-54



Kalman Filtering

You are now ready to simulate the filter behavior. Generate a sinusoidal
input u and process and measurement noise vectors w and v.

t = [0:100]';
u = sin(t/5);

n = length(t)
randn('seed',0)
w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Now simulate with lsim.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1); % true response
ye = out(:,2); % filtered response
yv = y + v; % measured response

and compare the true and filtered responses graphically.

subplot(211), plot(t,y,'--',t,ye,'-'),
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),
xlabel('No. of samples'), ylabel('Error')
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The first plot shows the true response y (dashed line) and the filtered output
ye (solid line). The second plot compares the measurement error (dash-dot)
with the estimation error (solid). This plot shows that the noise level has been
significantly reduced. This is confirmed by the following error covariance
computations.

MeasErr = y-yv;
MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

The error covariance before filtering (measurement error) is

MeasErrCov

MeasErrCov =
1.1138

while the error covariance after filtering (estimation error) is only
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EstErrCov

EstErrCov =
0.2722

Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter
for time-varying systems or LTI systems with nonstationary noise covariance.
Given the plant state and measurement equations

x n Ax n Bu n Gw n

y n Cx n v nv

+[ ] = [ ] + [ ] + [ ]
[ ] = [ ] + [ ]
1

the time-varying Kalman filter is given by the recursions

Measurement update

ˆ | ˆ | ( ˆ | )

| (

x n n x n n M n y n Cx n n

M n P n n C R n

v
T

[ ] = −[ ] + [ ] [ ] − −[ ]
[ ] = −[ ]

1 1

1 [[ ] + −[ ]
[ ] = − [ ] −[ ]

−CP n n C

P n n I M n C P n n

T| )

| ( ) |

1

1

1

Time update

ˆ | ˆ |

| |

x n n Ax n n Bu n

P n n AP n n A GQ n GT T

+[ ] = [ ] + [ ]
+[ ] = [ ] + [ ]
1

1

with ˆ |x n n −[ ]1 and ˆ |x n n[ ] as defined in “Discrete Kalman Filter” on page
11-50, and in the following.
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Q n E w n w n

R n E v n v n

P n n E x n x n n x n

T

T

[ ] = [ ] [ ]
[ ] = [ ] [ ]
[ ] = [ ] − [ ]{ }

( )

( )

| ( | [[ ] − [ ]{ }
−[ ] = [ ] − −[ ]{ } [ ] − −[ ]{ }

x n n

P n n E x n x n n x n x n n

T

T

| )

| ( | | )1 1 1

For simplicity, we have dropped the subscripts indicating the time dependence
of the state-space matrices.

Given initial conditions x[1|0] and P[1|0], you can iterate these equations
to perform the filtering. Note that you must update both the state estimates

x n|.[ ] and error covariance matrices P n|.[ ] at each time sample.

Time-Varying Design
Although the Control System Toolbox software does not offer specific
commands to perform time-varying Kalman filtering, it is easy to implement
the filter recursions in the MATLAB environment. This section shows how to
do this for the stationary plant considered above.

First generate noisy output measurements

% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,-1);
y = lsim(sys,u+w); % w = process noise
yv = y + v; % v = measurement noise

Given the initial conditions

x P BQBT1 0 0 1 0| , |[ ] = [ ] =

you can implement the time-varying filter with the following for loop.

P = B*Q*B'; % Initial error covariance
x = zeros(3,1); % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1);
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for i=1:length(t)
% Measurement update
Mn = P*C'/(C*P*C'+R);
x = x + Mn*(yv(i)-C*x); % x[n|n]
P = (eye(3)-Mn*C)*P; % P[n|n]

ye(i) = C*x;
errcov(i) = C*P*C';

% Time update
x = A*x + B*u(i); % x[n+1|n]
P = A*P*A' + B*Q*B'; % P[n+1|n]

end

You can now compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')
title('Time-varying Kalman filter response')
xlabel('No. of samples'), ylabel('Output')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')
xlabel('No. of samples'), ylabel('Output')
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The first plot shows the true response y (dashed line) and the filtered response
ye (solid line). The second plot compares the measurement error (dash-dot)
with the estimation error (solid).

The time-varying filter also estimates the covariance errcov of the estimation
error y − ye at each sample. Plot it to see if your filter reached steady state (as
you expect with stationary input noise).

subplot(211)
plot(t,errcov), ylabel('Error covar')
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From this covariance plot, you can see that the output covariance did indeed
reach a steady state in about five samples. From then on, your time-varying
filter has the same performance as the steady-state version.

Compare with the estimation error covariance derived from the experimental
data. Type

EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr)
EstErrCov =

0.2718

This value is smaller than the theoretical value errcov and close to the value
obtained for the steady-state design.

Finally, note that the final value M[n] and the steady-state value M of the
innovation gain matrix coincide.

Mn, M
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Mn =
0.3798
0.0817

-0.2570

M =
0.3798
0.0817

-0.2570
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Scaling State-Space Models

In this section...

“Why Scaling Is Important” on page 12-2

“When to Scale Your Model” on page 12-2

“Manually Scaling Your Model” on page 12-3

Why Scaling Is Important
When working with state-space models, proper scaling is important for
accurate computations. A state-space model is well scaled when the following
conditions exist:

• The entries of the A, B, and C matrices are homogenous in magnitude.

• The model characteristics are insensitive to small perturbations in A, B,
and C (in comparison to their norms).

Working with poorly scaled models can cause your model a severe loss of
accuracy and puzzling results. An example of a poorly scaled model is a
dynamic system with two states in the state vector that have units of light
years and millimeters. Such disparate units may introduce both very large
and very small entries into the A matrix. Over the course of computations,
this mix of small and large entries in the matrix could destroy important
characteristics of the model and lead to incorrect results.

For more information on the harmful affects of a poorly scaled model, see the
Scaling Models to Maximize Accuracy demo.

When to Scale Your Model
You can avoid scaling issues altogether by carefully selecting units to reduce
the spread between small and large coefficients.

In general, you do not have to perform your own scaling when using the
Control System Toolbox software. The algorithms automatically scale your
model to prevent loss of accuracy. The automated scaling chooses a frequency
range to maximize accuracy based on the dominant dynamics of the model.
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In most cases, automated scaling provides high accuracy without your
intervention. For some models with dynamics spanning a wide frequency
range, however, it is impossible to achieve good accuracy at all frequencies
and some tradeoff of accuracy in different frequency bands is necessary. In
such cases, a warning alerts you of potential inaccuracies. If you receive
this warning, evaluate the tradeoffs and consider manually adjusting the
frequency interval where you most need high accuracy. For information on
how to manually scale your model, see “Manually Scaling Your Model” on
page 12-3.

Note For models with satisfactory scaling, you can bypass automated scaling
in the Control System Toolbox software. To do so, set the Scaled property
of your state-space model to 1 (true). For information on how to set this
property, see the set reference page.

Manually Scaling Your Model
If automatic scaling produces a warning, you can use the prescale command
to manually scale your model and adjust the frequency interval where you
most need high accuracy.

The prescale command includes a Scaling Tool GUI, which you can use to
visualize accuracy tradeoffs and to adjust the frequency interval where this
accuracy is maximized.

To scale your model using the Scaling Tool GUI, you perform the following
steps:

• “Opening the Scaling Tool GUI” on page 12-4

• “Specifying the Frequency Axis Limits in the Scaling Tool GUI” on page
12-5

• “Specifying the Frequency Band for Maximum Accuracy in the Scaling
Tool GUI” on page 12-6

• “Saving the Scaling in the Scaling Tool GUI” on page 12-6

For an example of using the Scaling Tool GUI on a real model, see the Scaling
Models to Maximize Accuracy demo.
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For more information about scaling models from the command line, see the
prescale reference page.

Opening the Scaling Tool GUI
To open the Scaling Tool GUI for a state-space model named sys, type

prescale(sys)

The Scaling Tool GUI resembles one shown in the following figure.

The Scaling Tool GUI contains the following plots:

• The Frequency Response Gain plot helps you determine the frequency
band over which you want to maximize scaling.
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For SISO systems, this plot shows the gain of your model. For MIMO
systems, the plot shows the principle gain (largest singular value) of your
model.

• The Frequency Response Accuracy plot allows you to view the accuracy
tradeoffs for your model when maximizing accuracy in a particular
frequency bands.

This plot shows the following information:

- Relative accuracy of the response of the original unscaled model in red

- Relative accuracy of the response of the scaled model in blue

- Best achievable accuracy when using independent scaling at each
frequency in brown

When you compute some model characteristics, such as the frequency
response or the system zeros, the software produces the exact answer for
some perturbation of the model you specified. The relative accuracy is a
measure of the worst-case relative gap between the frequency response of
the original and perturbed models. The perturbation accounts for rounding
errors during calculation. Any relative accuracy value greater than 1
implies poor accuracy.

Tip If the blue Scaled curve is close to the brown Pointwise Optimal curve
in a particular frequency band, you already have the best possible accuracy
in that frequency band.

Specifying the Frequency Axis Limits in the Scaling Tool GUI
You can change the limits of the plot axis to view a particular frequency band
of interest in the Scaling Tool GUI. To view a particular frequency band,
specify the band in the Show response in the frequency band fields.

This action updates the frequency axis of the Scaling tool to show the specified
frequency band.

Tip To return to the default display, select the Auto check box.
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Specifying the Frequency Band for Maximum Accuracy in the
Scaling Tool GUI
To adjust the frequency band where you want maximum accuracy, set a new
frequency band in theMaximize accuracy in the frequency band fields.
You can visualize accuracy tradeoffs by trying out different frequency bands
and viewing the resulting relative accuracy across the frequency band of
interest.

Note You can use the Frequency Response Gain plot, which plots the
gain of your model, to view the dynamics in your model to help determine the
frequency band to maximize accuracy.

Each time you specify a new frequency band, the Frequency Response
Accuracy plot updates with the result of the new scaling. Compare the
Scaled curve (blue) to the Pointwise Optimal curve (brown) to determine
where the new scaling is nearly optimal and where you need more accuracy.

Tip To return to the default scaling, select the Auto check box.

Saving the Scaling in the Scaling Tool GUI
When you find a good scaling for your model, save the scaled model as follows:

1 Click Save Scaling.

This action opens the Save to Workspace dialog box.

2 In the Save to Workspace dialog box, verify that any of the following items
you want to save are selected, and specify variable names for these items.
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• Scaled model

• Scaling information, including:

– Scaling factors

– Frequencies used to test accuracy

– Relative accuracy at each test frequency
For details about the scaling information, see the prescale reference
page.

3 Click OK.

This action sets the State-Space (@ss) object Scaled property of your model
to true. When you set this property to True, the Control System Toolbox
algorithms skip the automated scaling of the model.
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How To Get Accurate Results
To ensure that you get accurate results, watch for the issues described in the
How to Get Accurate Results category of demos.
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Using the SISO Design Tool and
the LTI Viewer

• Chapter 13, “SISO Design Tool”

• Chapter 14, “LTI Viewer”
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Overview of the SISO Design Tool
The SISO Design Tool is a graphical-user interface (GUI) to design
compensators.

The SISO Design Tool has the following components:

• The SISO Design Task Node in the Control and Estimation Tools Manager,
a user interface (UI) that facilitates the design of compensators for
single-input, single-output feedback loops through a series of interactive
panes.

• The Graphical Tuning Window, a graphical user interface (GUI) for
displaying and manipulating the Bode, root locus, and Nichols plots for the
controller currently being designed. This window is titled SISO Design
for Design Name. The Graphical Tuning Window by default displays the
root locus and Bode diagrams for your imported systems. The two are
dynamically linked; for example, if you change the gain in the root locus, it
immediately affects the Bode diagrams as well.

• The SISO Design Task-associated LTI Viewer (For instructions on how to
operate the LTI Viewer, see Chapter 14, “LTI Viewer”)

• A tool that automatically generates compensators using PID, internal
model control (IMC), or linear-quadratic-Gaussian (LQG) methods.

• Optimization-based tuning methods that automatically tune the system
to satisfy design requirements (available if you have Simulink Design
Optimization software installed).

See “Designing Compensators” in the Control System Toolbox Getting Started
Guide to learn about the typical design tasks you can perform using the SISO
Design Tool. The following topics describe all available options for the SISO
Design Tool.
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Opening the SISO Design Tool
To open the SISO Design Task node in the Control and Estimation Tools
Manager and the Graphical Tuning Window, type

sisotool

Load the Gservo model that you want to control in the MATLAB workspace
by typing

load ltiexamples

In the Architecture tab of the Control and Estimation Tools Manager GUI,
click System Data to import the model into the SISO Design Tool.

Tip You can import LTI models and arrays of LTI models for the plant G and
sensor H into the SISO Design Tool. For more information, see “Importing
Models into the SISO Design Tool” in the Getting Started Guide.

Alternatively, to open the SISO Design Tool with the Gservo system, type

sisotool(Gservo)
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Using the SISO Design Task Node

In this section...

“The SISO Design Task Node” on page 13-4

“SISO Design Task Node Menu Bar” on page 13-4

The SISO Design Task Node
The following figure shows the SISO Design Task node in the Control and
Estimation Tools Manager.

SISO Design Task Node on the Control and Estimation Tools Manager

SISO Design Task Node Menu Bar
The SISO Design Task node menu bar contains the following menus:
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File Menu Options

Load
Save
Export
Close

• Load

To load a saved SISO Design Tool project, select Load from the File menu.
This opens the Load Projects window.

Projects are saved as MAT-files. Select the project you want to load from
the list, or click ... to browse for projects you can select from, and click OK.

• Save

You can exit the MATLAB technical computing environment and later
restore the SISO Design Tool to the state you left it in by saving the project.
Select Save from the File menu. This opens the Save Projects window.
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To save a project, specify a file name and click OK. The current state and
configuration of your SISO Design Tool are saved as a MAT-file. To load a
saved project, select Load from the File menu (see previous bullet).

• Export

Selecting Export from the File menu opens the SISO Tool Export window.

13-6



Using the SISO Design Task Node

You can perform the following tasks in this window:

- Export models to the MATLAB workspace or to a disk. The exported
models are:

• LTI objects if the plant and sensor are LTI models

• Arrays of LTI objects if the plant or sensor are arrays of LTI models

- Rename models when exporting

- Save variations on models, including open and closed loop models,
sensitivity transfer functions, and state-space representations

To export models to the MATLAB workspace, follow these steps:

1 Select the model you want to export from the Component list by left-clicking
the model name. To select more than one model, hold down the Shift key if
they are adjacent on the list. If you want to save nonadjacent models, hold
down the Ctrl key while selecting the models.

2 For each model you want to save, specify a name in the model’s cell in
the Export As list. A default name exists if you do not want to assign a
new name.
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3 Click Export to Workspace.

If you want to save your models as a MAT-file, follow steps 1 and 2 and click
Export to Disk, which opens this window.

Choose where you want to save the file in the Save in field and specify the
name of the MAT-file in the File name field. Click Save to save the file.

• Close

Use Close to close the SISO Design Tool. This closes all components of
the SISO Design Tool.

Edit Menu Options

Undo
Redo
SISO Tool Preferences

• Undo

Use Undo to go back in design steps. Note that the Undo menu changes
when the task you have just performed changes. For example, if you change
the compensator gain, the Undo menu item now reads Undo Edit Gain.

• Redo

Use Redo to go forward in the design steps. You can only use Redo if
you have previously used Undo. Like the Undo menu, the Redo menu
changes when the task you have just performed changes. For example, if
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you change the compensator gain, and then select Undo Edit Gain, the
Redo menu item becomes Redo Edit Gain.

• SISO Tool Preferences

Select SISO Tool Preferences from the Edit menu to open the SISO
Tool Preferences dialog box.

You can use this window to do the following:

- Change units

- Add plot grids, change font styles for titles, labels, etc., and change axes
foreground colors

- Change the compensator format

- Show or hide system poles and zeros in Bode diagrams

For a discussion of this window’s features, see Setting Toolbox Preferences"
online in the Control System Toolbox documentation.

Help
Selecting About the Control and Estimation Tools Manager in the
Help menu opens a window with the version number and a copyright notice
for this product.
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Buttons Available from Any Pane

• “Showing the Control Architecture” on page 13-10

• “Store Design” on page 13-10

Showing the Control Architecture. Click Show Architecture to open a
window that displays the block diagram for your model. For example,

Below the block diagram is a table that shows the default names for each part
of the block diagram and the assigned name, if you have one.

Store Design. Click Store Design to save your design to your SISO Design
Task node. Click onDesign under the node to see a snapshot summary of your
design. Click on the Design History node to show a list of all stored designs.
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Using the SISO Design Task in the Controls & Estimation
Tools Manager

In this section...

“Architecture” on page 13-11

“Compensator Editor” on page 13-18

“Graphical Tuning” on page 13-19

“Analysis Plots” on page 13-23

“Automated Tuning” on page 13-24

Architecture
Use the Architecture tab for:

• “Block Diagram Structure Modifications” on page 13-12

• “Loop Configuration” on page 13-14

• “Model Import” on page 13-14

• “Sample Times for Continuous/Discrete Conversions” on page 13-16

• “Multimodel Configuration” on page 13-17
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Architecture Pane on the SISO Design Task Node

Block Diagram Structure Modifications
Click Control Architecture to change the feedback structure and label
signals and blocks. The following pane appears:
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Select an architecture from the list of block configurations. These include
compensator in the forward path, compensator in the feedback path,
feedforward controller, and various multi-loop configurations. The window
automatically updates to show the selected configuration.

Each configuration has associated Signs and Blocks and Signals panes. This
figure shows the Signs pane.
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The Blocks and Signals pane displays the generic identifier, for example F for
the prefilter block, and a default name.
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Loop Configuration
Click Loop Configuration to configure loops for multi-loop design by
opening signals to remove the effects of other feedback loops.

To specify openings for a given open loop, select the loop in the combo box.
Click Highlight Feedback Loop to see the effects of the selected openings.

For an example of how to use this window in design, see Multi-Loop
Compensator Design.

Model Import
Click System Data on the Architecture pane to import models into your
system. This opens the System Data dialog box, shown below.
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You can import models for the plant (G), compensator (C), prefilter (F), and/or
sensor (H). G or H or both are LTI models or row or column arrays of LTI
models. If both G and H are arrays, their sizes must match.

To import a model:

1 Select a system in the System column and click Browse. The Model
Import dialog box opens, as shown in the next figure.
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2 Select a model from the Available Models list. You can import models
from:

• The MATLAB workspace

• A MAT-file

3 Click Import, then click Close. You can now see the model loaded into the
system selected in the System Data dialog.

4 Click OK. The Graphical Tuning window is updated with the model you
loaded.

Alternatively, you can import by entering a valid expression or variable
(double, LTI object or row or column array of LTI objects) in the Data column
in the System Data window.

For more information, see “Importing Models into the SISO Design Tool”.

Sample Times for Continuous/Discrete Conversions
Click Sample Time Conversion to convert the sample time of the system or
switch between different sample times to design different compensators.
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Choose from Zero-Order Hold, First-Order Hold, Impulse Variant, Tustin,
Tustin w/Prewarping, and Matched Pole-Zero.

For a full description, see “Continuous/Discrete Conversions Using the
Sample Time Conversion Dialog Box” on page 13-50.

Multimodel Configuration
TheMultimodel Configuration button is enabled only when you import or
open the SISO Design Tool GUI with a row or column arrays of LTI models
for the plant G or sensor H or both. The LTI arrays model system variations
in the plant and sensor. If both G and H are arrays, their sizes must match.

Click Multimodel Configuration to specify the nominal model and
frequency grid for multimodel computations. This action opens the
Multimodel Configuration Dialog window, as shown in the next figure.
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For more information, see “Control Design Analysis of Multiple Models”.

Compensator Editor
Use the Compensator Editor for adding or editing gains, poles, and zeros.
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Compensator Editor Pane on the SISO Design Task Node

1 Enter the compensator gain in the text box in the top part of the pane.

2 Add or remove compensator poles and zeros by right-clicking in the
Dynamics table.

3 Adjust pole and zero settings by entering values directly in the Edit
Selected Dynamics group box.

Graphical Tuning
Use the Graphical Tuning pane for

• “Configuring Design Plots for the Graphical Tuning Window” on page 13-20

• “Selecting New Loops to Tune” on page 13-22

• “Refocusing on the Graphical Tuning Window” on page 13-22
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Graphical Tuning Pane on the SISO Design Task Node

Configuring Design Plots for the Graphical Tuning Window
Click the Graphical Tuning tab to configure design plots displayed in the
Graphical Tuning Window.
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In the Graphical Tuning window, use design plots to graphically manipulate
system response. These design plots are dynamically linked to the SISO
Design Task. When you change the dynamics of your compensator in either
the SISO Design Task or the Graphical Tuning window, the design updates in
both places.

For open-loop responses, the available plot types are:

• Root locus

• Nichols

• Bode

For closed-loop responses, the available plot type is Bode.
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For row or column arrays of LTI models, the design plots show the individual
response of all models in the array by default. For more information, see
“Using the Graphical Tuning Window” in the Getting Started Guide.

Selecting New Loops to Tune
Click Select New Open/Closed Loops to Tune to open a window for
specifying new loops to tune.

Use the pull down menus to select the desired closed loop to tune by specifying
the input, output, and blocks for tuning. Using the dialog box, you can select
additional closed loops to tune.

Any loop you specify is displayed in the Summary of Available Loops to
Tune in the Graphical Tuning pane. The list is also available in the Design
plots configuration table of the same pane. You can use the latter for
configuring design plots.

Refocusing on the Graphical Tuning Window
Click Show Design Plot to change the focus to the Graphical Tuning window.

13-22



Using the SISO Design Task in the Controls & Estimation Tools Manager

Analysis Plots
Use the Analysis Plots pane for

• “Customizing Loop Responses” on page 13-23

• “Adding New Response Plots” on page 13-24

• “Opening or Changing the Focus to the LTI Viewer” on page 13-24

Analysis Plots Pane on the SISO Design Task Node

Customizing Loop Responses
The following sections describe the main components of the Analysis Plots
pane.

Analysis Plots. You can have up to six plots in one LTI Viewer. To add a
plot, start by selecting "Plot 1" from the list of plots. Then select a new plot
type from the pull down menu. You can choose any of the plots available in
the LTI Viewer. Select "None" to remove a plot.
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Contents of plots. Once you have selected a plot type, you can include
several open- and closed-loop transfer function responses for display. You can
plot open-loop responses for each of the components of your system, including
your compensator (C), plant (G), prefilter (F), or sensor (H). In addition,
various closed loop and sensitivity response plots are available.

For row or column arrays of LTI models, the analysis plots show the response
of the nominal model only by default. For more information, see “Analysis
Plots for Loop Responses” in the Getting Started Guide.

Adding New Response Plots
Click Add Responses to open a window with three drop-down menus for
selecting open and closed loop responses for various input and output nodes in
the control architecture block diagram. This allows you to select additional
responses for viewing. The Response table updates automatically to include
the selected response.

Opening or Changing the Focus to the LTI Viewer
Click Show Analysis Plot to open a new LTI Viewer for SISO Design with
the response plots that you selected. All the plots open in one instance of
the LTI Viewer.

Automated Tuning
Use the Automated Tuning pane to select a method for automatic tuning
of your compensator design. Automated tuning methods help you design an
initial compensator for a SISO loop that satisfies your design specifications.
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You can choose among the following design methods:

• “Optimization-Based Tuning” on page 13-27 — Optimize compensator
parameters using design requirements implemented in graphical tuning
and analysis plots

• “PID Tuning” on page 13-28 — Tune PID controller parameters using the
Robust response time tuning algorithm or classic tuning formulas

• “Internal Model Control (IMC) Tuning” on page 13-36 — Obtain a full-order
stabilizing feedback controller using the IMC design method

• “LQG Synthesis” on page 13-37 — Design a full-order stabilizing feedback
controller as a Linear-Quadratic-Gaussian (LQG) tracker

• “Loop Shaping” on page 13-39 — Find a full-order stabilizing feedback
controller with a desired open loop bandwidth or shape
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After you select a design method, the pane updates to display the
corresponding options.

Note If the particular design method you are using does not apply or fails, try
selecting different tuning specifications or switch to a different design method.

Stability of an Effective Plant for Automated Tuning
Knowing the stability of the effective plant in your model may help you
understand which automated tuning methods work for your model. Some of
the automated tuning methods only apply to compensators whose open loops

( L C P=
∧
) have stable effective plants ( P

∧
).

An effective plant is the system controlled by the compensator you design
and contains all elements of the open loop in your model other than this
compensator. The following figure shows two examples of effective plants.
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Generic Work Flow
For each method, follow these steps to do your design:

1 Select an automated tuning algorithm from the Design method drop-down
menu.

2 If you select Optimization-Based Tuning, stop here and see
“Optimization-Based Tuning” on page 13-27.
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3 Select a compensator from the drop-down menu.

4 Determine how you want the compensator to perform and set the tuning
specifications.

5 Click Update Compensator and notice the changes in the associated
design and analysis plots.

Note If you encounter a disabled Update Compensator button, try
selecting different tuning specifications (Step 4) or switch to a different
tuning algorithm (Step 1). The disabled button means that the current
method does not work for your model.

Optimization-Based Tuning
Optimization-based tuning is available only if you have Simulink Design
Optimization software installed. You can use this method to either:

• Directly tune response signals within Simulink models.

• Tune responses of LTI systems using a SISO Design Task.
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See “Frequency Domain Response Optimization Example” in the Simulink
Design Optimization documentation for more details.

PID Tuning
PID (proportional-integral-derivative) control is the most popular control
technique used in modern industry.

To use automatic PID tuning, select PID Tuning from the Automated Tuning
pane of the Control and Estimation Tools Manager. In most cases, the PID
controllers resulting from PID tuning provide acceptable performance. Use
the “Analysis Plots” on page 13-23 to verify design results.
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Types of PID Controllers.
SISO Design Tool provides automated tuning for the following PID controller
types.

• P — Proportional-only control

• I — Integral-only control (available only for the Robust response time
tuning method)

• PI — Proportional-integral control

• PD — Proportional-derivative control (available only for the Robust
response time tuning method)

• PDF — Proportional-derivative control with a low-pass filter on the
derivative term (available only for the Robust response time tuning
method)

• PID — Proportional-integral-derivative control
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• PIDF — Proportional-integral-derivative control with a low-pass filter on
the derivative term

PID Tuning Methods.
SISO Design Tool provides a Robust response time algorithm for interactive
tuning, as well as six well-known classical tuning methods.

Robust response time. This method computes PID parameters to robustly
stabilize your system based on the bandwidth and phase margin that you
specify. Using the robust response time method you can:

• Tune interactively, adjusting bandwidth and phase margin to achieve your
desired balance between performance and robustness

• Tune any type of PID controller (P, I, PI, PD, PDF, PID, or PIDF)

• Tune all PID parameters, including the derivative filter

• Design for plants that are stable, unstable, or integrating

Classical design formulas. SISO Design Tool includes the following
well-known PID design formulas:

• Approximate MIGO frequency response— Closed-loop frequency-domain
approximate M-constrained integral gain approximation (see [1], Section
7.5).

• Approximate MIGO step response — Open-loop time-domain
approximate M-constrained integral gain approximation (see [1], Sections
7.3–7.4).

• Chien-Hrones-Reswick — Approximates the plant as a first-order
model with a time delay and computes PID parameters using a
Chien-Hrones-Reswick look-up table for zero overshoot and disturbance
rejection (see [1], Section 6.2).

• Skogestad IMC — Approximates the plant as a first-order model with a
time delay and computes PID parameters using Skogestad design rules
(see [2]).

(This method is different from selecting “Internal Model Control (IMC)
Tuning” on page 13-36 as the full-order compensator tuning method).
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• Ziegler-Nichols frequency response — Computes controller
parameters from a Ziegler-Nichols lookup table, based on the ultimate gain
and frequency of the system (see [1], Section 6.2).

• Ziegler-Nichols step response — Approximates the plant as a
first-order model with a time delay that and computes PID parameters
using the Ziegler-Nichols design method (see [1], Section 6.2).

The classical design formulas:

• Require a stable or integrating plant.

• Can design for P, PI, PID, or PID with derivative filter.

• Cannot tune the derivative filter. If you select PID with derivative filter,
classical design formulas set the filter time constant to Td/10, where Td is
the tuned derivative time.

Automated Tuning using the Robust Response Time Method.
To use the robust response time tuning method:

1 Select Robust response time from the Tuning method menu.

2 Choose a controller type by clicking the corresponding radio button. To
include a first-order filter on the derivative action for PD or PID controller
type, check the Design with first order derivative filter checkbox.
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Note If you are tuning a PID Controller block in a Simulink model and
your block is type P, I, or PI, select the same controller type as the block. If
your block is type PD or PID, select the corresponding button and check the
Design with first order derivative filter checkbox.

3 Click Update Compensator to design a controller of the selected type.

By default, the SISO Design Tool automatically computes controller
parameters for balanced performance and robustness.

4 Analyze the response using the analysis plots you select on the Analysis
Plots pane.

5 To design a controller interactively, select Interactive (adjustable
performance and robustness) from the Design mode menu. This
selection activates the Bandwidth and Phase Margin sliders.

13-32



Using the SISO Design Task in the Controls & Estimation Tools Manager

Adjust the bandwidth and phase margin to achieve your desired controller
performance. For example:

• Increase the bandwidth for a more aggressive controller.

• Increase the phase margin to reduce overshoot.

You can adjust the bandwidth and phase margin values by:

• Moving the sliders

• Entering values in the text field

• Incrementally adjusting the values in the text field using the up and
down arrows.

To increase or decrease the bandwidth by a factor of 10, click the right
or left double arrows, respectively.
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Note Click the Reset bandwidth and phase margin button at any time
to return the sliders to the bandwidth and phase margin of the default
compensator design for your plant.

6 Click Update Compensator again. SISO Design Tool computes new
controller parameters for the specified target bandwidth and phase margin.
Repeat steps 4-6 as necessary to achieve your desired performance.

Note SISO Design Tool displays the tuned compensator in zpk form in
the Compensator section of the Automated Tuning Pane. To convert the
compensator to parallel or standard PID form, export the compensator to the
MATLAB workspace, as described in “SISO Design Task Node Menu Bar” on
page 13-4. Then use the pid or pidstd commands to convert the exported
compensator to parallel or standard PID parameters, respectively.

Automated Tuning using Classical Design Formulas.
To use one of the classical design formulas:

1 Select Classical design formulas from the Tuning method menu.

2 Select a controller type (P, PI, PID, or PID with derivative filter) by clicking
the corresponding radio button.
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Note If you are tuning a PID Controller block in a Simulink model and
your block is type P or PI, select the same controller type as the block. If
your block is type PID, select PID with derivative filter. If your block is
type PD or I, use the Robust response time tuning method.

3 Select the classical design formula you want to use from the Formula
menu.

4 Click the Update Compensator button to design a controller using the
selected formula.

Note SISO Design Tool displays the tuned compensator in zpk form in
the Compensator section of the Automated Tuning Pane. To convert the
compensator to parallel or standard PID form, export the compensator to the
MATLAB workspace, as described in “SISO Design Task Node Menu Bar” on
page 13-4. Then use the pid or pidstd commands to convert the exported
compensator to parallel or standard PID parameters, respectively.
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Internal Model Control (IMC) Tuning
IMC design generates a full-order feedback controller that guarantees
closed-loop stability when there is no model error. It also contains an
integrator, which guarantees zero steady-state offset for plants without a free
differentiator. You can use this tuning method for both stable and unstable
plants.
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To design an IMC controller:

1 Specify a value in the Dominant closed-loop time constant field.
The initial value is set as 5% of the open-loop settling time. In general,
increasing this value slows down the closed system and makes it more
robust.

2 Specify a value in the Desired controller order field using the slider.
After you obtain a full-order feedback controller, you can try to reduce its
order. You may lose performance and closed-loop stability if you reduce
the order.

3 Click Update Compensator.

LQG Synthesis
LQG tracker design generates a full-order feedback controller that guarantees
closed-loop stability. It also contains an integrator, which guarantees zero
steady-state error for plants without a free differentiator.
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To design an LQG controller:

1 Specify your preference for controller response using the Controller
response slider.

• Move the slider to the left for aggressive control response.

This means that large overshoot is more heavily penalized so that the
controller acts more aggressively. If you believe your model is accurate
and that the manipulated variable has a large enough range, an
aggressive controller is more desirable.

• Move the slider to the right for robust control response.

2 Specify your estimation of the level of measurement noise using the
Measurement noise slider.

• Move the slider to the left for small measurement noise.
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This means that you expect low noise from the process output
measurement. Because this measurement is used by the Kalman
estimator, process disturbances are picked up more accurately by the
estimated states. In this case, the controller is freer from robustness
considerations.

• Move the slider to the right for large measurement noise. This results in
a controller that is more robust to measurement noise.

3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.

Loop Shaping
Loop shaping generates a stabilizing feedback controller to match as closely
as possible to a desired loop shape. You can specify this loop shape as a
bandwidth or an open loop frequency response. If you have Robust Control
Toolbox software installed, you can use loop shaping for SISO systems. For
more information see the section on H-Infinity Loop Shaping in the Robust
Control Toolbox User’s Guide.

To design a controller using loop shaping:

1 Select a tuning preference by clicking one of these option buttons:

• Target bandwidth — Allows you to specify a target loop shape

bandwidth (ωb ). This results in a loop shape of your specified bandwidth

over an integrator (
ωb
s
).

• Target loop shape— Allows you to specify the target open loop shape
in one of the following representations: state-space, zero-pole-gain, or
transfer functions.

2 Set the tuning options available for your selected tuning preference as
follows:

• If you chose Target bandwidth, specify the desired Target open-loop
bandwidth in the editable box.

13-39



13 SISO Design Tool

• If you chose Target loop shape, do the following:

– Enter the desired Target open-loop shape (LTI).

This can be a state-space representation, a zero-pole-gain
representation, or a transfer function.

– Enter the desired Frequency range for loop shaping
[wmin,wmax].
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3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.
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SISO Design Task Graphical Tuning Window
The following figure shows the Graphical Tuning window and introduces
some terminology.

Graphical Tuning Window

Bode and Nichols plots in the graphical tuning window automatically display
the following information:

• Gain margin and the -180 degree phase crossing frequency where it is
measured

• Phase margin and the 0 dB gain crossing frequency where it is measured

• Whether the characteristic equation 1+L is stable (Stable loop) or
unstable (Unstable loop). L is the open loop plotted in the figure.
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For row or column arrays of LTI models, the plots display the characteristics
of the nominal model only.

The following topics describe the Graphical Tuning window features:

• “Using the Graphical Tuning Window Menu Bar” on page 13-44

• “Using the Graphical Tuning Window Toolbar” on page 13-56

• “Using the Right-Click Menus in the Graphical Tuning Window” on page
13-57
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Using the Graphical Tuning Window Menu Bar

In this section...

“Overview of the Graphical Tuning Window Menu Bar” on page 13-44

“File” on page 13-44

“Edit” on page 13-47

“View” on page 13-48

“Analysis” on page 13-49

“Tools” on page 13-50

“Window” on page 13-54

“Help” on page 13-54

Overview of the Graphical Tuning Window Menu Bar
Several of the tasks you can do in the SISO Design Tool can be done from
the menu bar, shown below.

File

Using the File menu, you can:

• Import and export models
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• Save and reload sessions

• Set toolbox preferences

• Print and print to figure

• Close the Graphical Tuning Window

The following sections describe the File menu options in turn.

Import
Selecting Import opens the same System Data dialog box that clicking
System Data on the Architecture pane does. See “Model Import” on page
13-14.

Export
Selecting Export from the Graphical Tuning window File menu opens the
same SISO Tool Export window that selecting Export from the SISO Design
Task node File menu does. See Export.

Save Session
Selecting Save Session from the Graphical Tuning window File menu opens
the same Save Projects window that selecting Save from the SISO Design
Task node File menu does. See Save.

Load Session
To load a saved SISO Design Tool session, select Load Session from the File
menu. This opens the Load Session dialog.
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Sessions are saved as MAT-files. Select the session you want to load from the
list, and click Open. See “Save Session” on page 13-45 for information on
saving SISO Design Tool sessions.

Toolbox Preferences
Select Toolbox Preferences from the File menu to open the Control
System Toolbox Preferences window.

The Control System Toolbox Preferences Window

For a discussion of this window’s features, see "Setting Toolbox Preferences"
online in the Control System Toolbox documentation.
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Print
Use Print to send a picture of the Graphical Tuning window to your printer.

Print to Figure
Print to Figure opens a separate figure window containing the design views
in your current Graphical Tuning window.

Close
Use Close to close the Graphical Tuning window.

Edit

Undo and Redo
Selecting Undo and Redo perform the same actions as selecting Undo
and Redo from the SISO Design Task Node Edit menu. See “Edit
Menu Options” on page 13-8.

Tuned Parameters
Selecting Tuned Parameters opens the SISO Tool Preferences dialog box
on the Options page.

SISO Tool Preferences
Selecting the SISO Tool Preferences option opens the same dialog box
that selecting SISO Tool Preferences from the Edit menu on the SISO Design
Task Node. See “Edit Menu Options” on page 13-8.
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View

Design Plots Configuration
Select Design Plots Configuration to open the Graphical Tuning pane. See
“Graphical Tuning” on page 13-19.

Closed-Loop Poles
Select Closed-Loop Poles from View to open the Closed-Loop Pole
Viewer.

This window displays all the closed-loop pole values of the selected feedback
loop and the associated damping and frequency values.

Design History
Select Design History from the View menu to open the Design History
window, which displays all the actions you’ve performed during a design
session. You can save the history to an ASCII flat text file by clicking Save
to Text File.
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Analysis

Common Response Plots
Each of the top group of items in the Analysis menu opens an LTI Viewer
that is dynamically linked to your SISO Design Tool. You have the following
response plot choices:

• Response to Step Command — The closed-loop step response of your
system

• Rejection of Step Disturbance — The open-loop step response of your
system

• Closed-Loop Bode— The closed-loop Bode diagram for your system

• Compensator Bode— The open-loop Bode diagram for your compensator

• Open-Loop Nyquist— The open-loop Nyquist plot for your system

When you make changes to the design via the Graphical Tuning window, the
Compensator Editor pane, or the Automated Tuning pane, the response plots
in the LTI Viewer automatically change to reflect the new design’s responses.

Other Loop Responses
If you choose Other Loop Responses, the Analysis Plots pane opens. See
“Analysis Plots” on page 13-23.
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Tools

Continuous/Discrete Conversions Using the Sample Time
Conversion Dialog Box

• “Converting Continuous-Time Models to Discrete-Time Models” on page
13-50

• “Converting Discrete-Time Models to Continuous-Time” on page 13-51

• “Changing the Sample Time of a Discrete-Time Model” on page 13-52

Converting Continuous-Time Models to Discrete-Time Models. To
convert a continuous-time model to a discrete-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Specify a positive number for the sample time in the Sample time (sec)
field.

3 Select a continuous-to-discrete conversion method for each component of
your model. The components include the plant (G), the compensator (C),
the prefilter (F), or the sensor (H). You can choose from the following
conversion methods:
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• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

Note If you choose Tustin with prewarping, you must specify the
critical frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see “Supported
Conversion Functions and Methods” on page 5-24 in the Control System
Toolbox documentation.

Converting Discrete-Time Models to Continuous-Time. To convert a
discrete-time model to a continuous-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Select a discrete-to-continuous conversion method for each component of
your model. The components include the plant (G), the compensator (C),
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the prefilter (F), or the sensor (H). You can choose from the following
conversion methods:

• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

Note If you choose Tustin with prewarping, you must specify the
critical frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see “Supported
Conversion Functions and Methods” on page 5-24 in the Control System
Toolbox documentation.

Changing the Sample Time of a Discrete-Time Model. To change the
sample time of (resample) a discrete system, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Click the Discrete time with new sample time option button.
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3 Specify a positive number for the sample time in the Sample time (sec)
field.

Draw Simulink Diagram

Note You must have a license for Simulink to use this feature. If you do not
have Simulink, this option does not appear under the Tools menu.

Select Draw Simulink Diagram from the Tools menu to draw a block
diagram of your system (plant, compensator, prefilter, and sensor). The
following diagram shows how the tool would render the DC motor example
described in the Control System Toolbox Getting Started Guide.

13-53



13 SISO Design Tool

Automated Tuning
Select Automated Tuning from the Tools menu in the SISO Design Tool
to open the Automated Tuning tab of the Control and Estimation Tools
Manager. You can use this tab to perform automated tuning of compensators.
For more information, see “Automated Tuning Design”.

Window
The Window menu item lists all of the windows open in the MATLAB
technical computing environment. The first item is always the MATLAB
Command Window. After that, the windows you have opened are listed in
the order in which you opened them. Select any window from the list to make
it the active window.

Help
Help brings you to various places in the Control System Toolbox help system.
This figure shows the menu.
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Each topics takes you to brief discussions of basic information about the SISO
Design Tool and the Control System Toolbox software:

• SISO Design Tool Help— An overview of the SISO Design Tool

• Control System Toolbox Help — A roadmap for the Control System
Toolbox help

• What’s This? — Activates the "What’s This?" cursor, which appears as a
question mark. Click in various regions of the SISO Design Tool to see brief
descriptions of the tool’s features.

• Importing/Exporting Models — How to import models into the SISO
Design Tool and how to export completed designs

• Tuning Compensators — Basic information about adjusting gains and
adding dynamics to your prefilter (F) and compensator (C)

• Viewing Loop Responses— How to open an LTI Viewer containing loop
responses for your system. Many response types are available.

• Viewing System Data— How to see information about your model

• Storing/Retrieving Designs — How to store and retrieve designed
systems

• Customizing the SISO Tool — How to open the SISO Tool Preferences
editor, which allows you to customize plot displays in the tool

• Demos — A link to Control System Toolbox demos

• About the Control System Toolbox software— The version number of
your Control System Toolbox software
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Using the Graphical Tuning Window Toolbar
The toolbar performs the following operations:

• Add and delete real and complex poles and zeros

• Zoom in and out

• Invoke the SISO Design Tool’s context-sensitive help

This picture shows the toolbar.

Options Available from the Toolbar

You can use the tool tips feature to find out what a particular icon does. Just
place your mouse over the icon in question, and you will see a brief description
of what it does.

Once you’ve selected an icon, your mouse stays in that mode until you press
the icon again.

You can reach all of these options from the right-click menus.
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Using the Right-Click Menus in the Graphical Tuning
Window

In this section...

“Overview of the Right-Click Menus” on page 13-57

“Add Pole/Zero” on page 13-58

“Delete Pole/Zero” on page 13-61

“Edit Compensator” on page 13-62

“Gain Target” on page 13-62

“Show” on page 13-62

“Multimodel Display” on page 13-63

“Design Requirements” on page 13-63

“Grid” on page 13-76

“Full View” on page 13-76

“Properties” on page 13-77

“Select Compensator” on page 13-78

“Status Pane” on page 13-78

Overview of the Right-Click Menus
The Graphical Tuning window provides right-click menus for all the views
available. These views include the root-locus, open-loop Bode diagrams,
Nichols plot, and the closed-loop Bode diagrams. The menu items in each
of these views are identical. The design requirements, however, differ,
depending on which view you are accessing the menus from.

You can use the right-click menu to design a compensator by adding poles,
zeros, lead, lag, and notch filters. In addition, you can use this menu to
add grids and zoom in on selected regions. Also, you can open each view’s
Property Editor to customize units and other elements of the display.
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Note Click items on the menu bar pictured below to get help contents.

Open-Loop Right-Click Menu

Note that if you have a closed-loop response, the Gain Target menu item is
replaced by “Select Compensator” on page 13-78.

Add Pole/Zero
The Add Pole/Zero menu options give you the ability to add dynamics to
your compensator design, including poles, zeros, lead and lag networks, and
notch filters. The following pole/zero configurations are available:

• Real Pole

• Complex Pole

• Integrator

• Real Zero

• Complex Zero

• Differentiator

• Lead

• Lag

• Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design,
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place the x at the desired location on the plot and left-click your mouse.
You will see the root locus design automatically update to include the new
compensator dynamics.

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see "Adding a Notch Filter" in the Control
System Toolbox Getting Started Guide.

Note For systems with FRD plants, you cannot add or modify poles and
zeros outside the plotted frequency range on Bode and Nichols plots. Instead,
you can make such modifications using the Compensator Editor pane of
the Control and Estimation Tools Manager. For more information, see
“Compensator Editor” on page 13-18.

Example: Adding a Complex Pair of Poles
This example shows you how to add a complex pair of poles to the open-loop
Bode diagram. First, type

load ltiexamples
sisotool('bode',sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor
example loaded and the open-loop Bode diagram displayed in the Graphical
Tuning window.
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To add a complex pair of poles:

1 Select Add Pole/Zero->Complex Pole from the right-click menu

2 Place the mouse cursor where you want the pole to be located

3 Left-click to add the pole

Your Graphical Tuning window should look similar to this.
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In the case of Bode diagrams, when you place a complex pole, the default
damping value is 1, which means you have a double real pole. To change the
damping, grab the red ‘x’ by left-clicking on it and drag it upward with your
mouse. You will see damping ratio change in the Status pane at the bottom of
the SISO Design Tool.

Delete Pole/Zero
Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:
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• You can only delete compensator poles and zeros. Plant (G in the feedback
structure pane) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair
is also removed.

Edit Compensator
Edit Compensator opens the Compensator Editor pane in the SISO
Design Task. You can use this pane to adjust the compensator gain and add or
remove compensator poles and zeros from your compensator (C) or prefilter (F)
design. See “Compensator Editor” on page 13-18 for a discussion of this pane.

Gain Target
This feature is intended for users of the Simulink Control Design software. It
is nonfunctional in the Control System Toolbox software.

Show
Use Show to select/deselect the display of characteristics relevant to which
view you are working with. This figure displays the Show submenu for the
open-loop Bode diagram.

For this particular view, the options available are magnitude, phase, and
stability margins. Selecting any of these toggles between showing and hiding
the feature. A check next to the feature means that it is currently displayed
on the Bode diagram plots. Although the characteristics are different for
each view in the Graphical Tuning window, they all toggle on and off in the
same manner.
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Multimodel Display
This menu is enabled only when you import or open the SISO Design Tool
with row or column arrays of LTI models.

Use Multimodel Display to view the responses of models in an LTI array
as individual responses or as an envelope encompassing all responses on
the Bode and Nichols plots.

On the Root Locus plot, use this menu to show or hide the pole/zero locations
of all models in the array, except the nominal one.

For more information on control design analysis for multiple models, see
“Control Design Analysis of Multiple Models” in the Getting Started Guide.

Design Requirements
When designing compensators, it is common to have design specifications that
call for specific settling times, damping ratios, and other characteristics. The
Graphical Tuning window provides tools for design requirements that can
help make the task of meeting design specifications easier.

The New Design Requirement dialog box lets you create design requirements
by creating graphical representations for feasible and nonfeasible regions,
automatically changes to reflect which design requirements are available for
the view in which you are working. Select Design Requirements > New
to open the New Design Requirement dialog box.

13-63



13 SISO Design Tool

Since each view has a different set of design requirements, click the following
links to go to the appropriate descriptions:

• “Design Requirements for the Root Locus” on page 13-64

• “Design Requirements for Open- and Closed-Loop Bode Diagrams” on
page 13-67

• “Design Requirements for Open-Loop Nichols Plots” on page 13-71

• “LTI Viewer for SISO Design Task Design Requirements” on page 13-79

For row or column arrays of LTI models, the design requirements are for the
nominal plant that you are designing the controller for. You can analyze
the effects of this controller on the remaining models. See “Control Design
Analysis of Multiple Models” in the Getting Started Guide.

Design Requirements for the Root Locus
For the root locus, you can use the following design requirements:

• “Settling Time” on page 13-64

• “Percent Overshoot” on page 13-65

• “Damping Ratio” on page 13-65

• “Natural Frequency” on page 13-65

• “Region Constraint” on page 13-65

Use the Design requirement type drop-down list to select a design
requirement. In each case, to specify the design requirement, enter the value
in the Design requirement parameters pane. You can select any or all of
them, or have more than one of each.

Settling Time. If you specify a settling time in the continuous-time root locus,
a vertical line appears on the root locus plot at the pole locations associated
with the settling time value provided (using a first-order approximation). This
vertical line is exact for a second order system and is only an approximation
for higher order systems. In the discrete-time case, the design requirement
boundary is a curved line.
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Percent Overshoot. Specifying percent overshoot in the continuous-time
root locus causes two rays, starting at the root locus origin, to appear.
These rays are the locus of poles associated with the percent value (using
a second-order approximation). In the discrete-time case, the design
requirement appears as two curves originating at (1,0) and meeting on the
real axis in the left-hand plane.

Note that the percent overshoot (p.o.) design requirement can be expressed
in terms of the damping ratio, as in this equation:
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where ζ is the damping ratio.

Damping Ratio. Specifying a damping ratio in the continuous-time root
locus causes two rays, starting at the root locus origin, to appear. These rays
are the locus of poles associated with the damping ratio. In the discrete-time
case, the design requirement boundary appears as curved lines originating at
(1,0) and meeting on the real axis in the left-hand plane.

Natural Frequency. If you specify a natural frequency lower bound, a
semicircle centered around the root locus origin appears. If you specify a
natural frequency upper bound, the inverse of this semicircle appears. The
radius equals the natural frequency.

Region Constraint. Specifying a region constraint at given locations causes
black lines and a yellow area to appear. The vertices of this free-form
piecewise region are defined by the specified real and imaginary values.

Example: Adding Damping Ratio Design Requirements
This example adds a damping ratio design requirement of 0.707.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(sys_dc)
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This opens the SISO Design Tool with the DC motor example imported.

2 From the root locus right-click menu, select Design Requirement > New
to open the New Design Requirement dialog box.

3 To add the design requirement, select Damping Ratio as the design
requirement. Click OK to accept the default damping ratio of 0.707.

The Graphical Tuning window should now look similar to this figure.

Damping Ratio Requirements in the Root Locus

The two rays centered at (0,0) represent the damping ratio boundaries. The
dark edge is the region boundary, and the shaded area outlines the exclusion
region. This figure explains what this means for this design requirement.
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You can, for example, use this design requirement to ensure that the
closed-loop poles, represented by the red squares, have some minimum
damping. Try adjusting the gain until the damping ratio of the closed-loop
poles is 0.7.

Design Requirements for Open- and Closed-Loop Bode
Diagrams
For both the open- and closed-loop Bode diagrams, you have the following
options:

• “Upper Gain Limit” on page 13-67

• “Lower Gain Limit” on page 13-68

• “Gain and Phase Margin” on page 13-68

Specifying any of these design requirements causes lines to appear in the
Bode magnitude curve. To specify an upper or lower gain limit, enter the
frequency range, the magnitude limit, and/or the slope in decibels per decade,
in the appropriate fields of the New design requirement dialog box. You
can have as many gain limit design requirements as you like in your Bode
magnitude plots.

Upper Gain Limit. You can specify one or multiple piecewise linear upper
gain limits over a frequency range, which appear as straight lines on the Bode
magnitude curve. You must select frequency limits, the upper gain limit in
decibels, and the slope in dB/decade.
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Lower Gain Limit. You can specify one or multiple lower gain limit in the
same fashion as the upper gain limit.

Gain and Phase Margin. You can specify a lower bound for the gain, the
phase margin, or both. The specified bounds appear in text on the Bode
magnitude plot.

Example: Adding Upper Gain Limits
This example shows you how to add two upper gain limit requirements to
the open-loop Bode diagram.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool('bode',Gservo)

This opens the SISO Design Tool with the servomechanism model loaded.

2 Use the right-click menu to add a grid.
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3 To add an upper gain limit requirement of 0 dB from 10 rad/sec to 100
rad/sec, open the New Design Requirement dialog box and select Upper
gain limit from the pull-down menu. Fill in the dialog box fields as shown
in the following figure.
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Your Graphical Tuning window should now look like this (you may have
to adjust some axis limits).
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4 To constrain the roll off, open the New Design Requirement dialog box and
add an upper gain limit from 100 rad/sec to 1000 rad/sec with a slope of -20
db/decade. This figure shows the result.

With these design requirements in place, you can see how much you can
increase the compensator gain and still meet design specifications.

Note that you can change the design requirements by moving them with
your mouse. See “Editing Design Requirements” on page 13-74 for more
information.

Design Requirements for Open-Loop Nichols Plots
For open-loop Nichols plots, you have the following design requirement
options:
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• “Phase Margin” on page 13-72

• “Gain Margin” on page 13-72

• “Closed-Loop Peak Gain” on page 13-72

• “Gain-Phase Design Requirement” on page 13-72

Specifying any of these design requirements causes lines or curves to appear
in the Nichols plot. In each case, to specify the design requirement, enter the
value in the Design requirement parameters pane. You can select any or
all of them, or have more than one of each.

Phase Margin. Specify a minimum phase margin at a given location.
For example, you can require a minimum of 30 degrees at the -180 degree
crossover. The phase margin specified should be a number greater than 0.
The location must be a -180 plus a multiple of 360 degrees. If you enter an
invalid location point, the closest valid location is selected.

Gain Margin. Specify a gain margin at a given location. For example, you
can require a minimum of 20 dB at the -180 degree crossover. The location
must be -180 plus a multiple of 360 degrees. If you enter an invalid location
point, the closest valid location is selected.

Closed-Loop Peak Gain. Specify a peak closed-loop gain at a given location.
The specified dB value can be positive or negative. The design requirement
follows the curves of the Nichols plot grid, so it is recommended that you have
the grid on when using this feature.

Gain-Phase Design Requirement. Specify both a gain and phase design
requirement at a given location. The vertices of this free-form piecewise
region are defined by the specified open-loop phase and open-loop gain values.

Example: Adding a Closed-Loop Peak Gain Design
Requirement
This example shows how to add a closed-loop peak gain design requirement to
the Nichols plot.

1 At the MATLAB prompt, type the following:

load ltiexamples
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sisotool('nichols',Gservo)

This opens the SISO Design Tool with Gservo imported as the plant.

2 Use the right-click menu to add a grid, as this figure shows.

3 To add closed-loop peak gain of 1 dB at -180 degrees, open the New Design
Requirement dialog box and select Closed-Loop Peak Gain from the
pull-down menu. Set the peak gain field to 1 dB.

The figure shows the resulting design requirement.
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As long as the curve is outside of the gray region, the closed-loop gain is
guaranteed to be less than 1 dB. Note that this is equivalent, up to second
order, to specifying the peak overshoot in the time domain. In this case, a 1
dB closed-loop peak gain corresponds to an overshoot of 15%.

Editing Design Requirements
To edit an existing design requirement, left-click on the design requirement
boundary to select it. Two black squares appear on the design requirement
when it is selected. In general, there are two ways to adjust a design
requirement:

• Click on the design requirement boundary and drag it. Generally, this does
not change the shape of the boundary. That is, the adjustment is strictly a
translation of the design requirement.
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• Grab a black square and drag it. In this case, you can rotate, expand,
and/or contract the design requirement.

For example, in Bode diagrams you can move an upper gain limit by clicking
on it and moving it anywhere in the plot region. As long as you haven’t
grabbed a black square, the length and slope of the gain limit will not change
as you move the line. On the other hand, you can change the slope of the
upper gain limit by grabbing one of the black squares and rotating the line.
In all cases, the Status pane at the bottom of the Graphical Tuning window
displays the design requirement values as they change.

This figure shows the process of editing an upper gain limit in the open-loop
Bode diagram.
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An alternative way to adjust a design requirement is to select Design
Requirements->Edit from the right-click menu. The Edit Design
Requirement window opens.

To adjust a design requirement, select the boundary by clicking on it and
change the values in the fields of the Design requirement parameters pane. If
you have additional design requirement in, for example, the Bode diagram,
you can edit them directly from this window by selecting Open-Loop Bode
from the Editor menu.

Deleting Design Requirements
To delete a design requirement, place your cursor directly over the design
requirement yellow region. Right-click to open a menu containing Edit
and Delete. Select Delete from the menu list; this eliminates the design
requirement. You can also delete design requirements by left-clicking on a
design requirement boundary and then pressing the BackSpace or Delete
key on your keyboard.

Finally, you can delete design requirements by selecting Undo Add Design
Requirement from the Edit menu, or pressing Ctrl+Z if adding design
requirements was the last action you took.

Grid
Grid adds a grid to the selected plot.

Full View
Selecting Full View causes the plot to scale limits so that the entire curve is
visible.
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Properties
Properties opens the Property Editor, which is a GUI for customizing
root locus, Bode diagrams, and Nichols plots inside the Graphical Tuning
window. The Property Editor automatically reconfigures as you select among
the different plots open.

This picture shows the open window for the root locus.

You can use this window to change titles and axis labels, reset axes limits,
add grid lines, and change the aspect ratio of the plot. Note that you can
also activate this menu by double-clicking anywhere in the root locus away
from the curve.

The are only three panes in the Property Editor: Labels, Limits, and Options.
The configuration of each page differs, depending on whether you’re working
with the root-locus, Bode diagrams, or the open-loop Nichols plot. Click
the Help button on the Property Editor you have open to view information
specific to that editor, or click on the links below:

• Root locus

• Bode diagram

• Nichols plot
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Select Compensator
This option allows you to select which compensator to edit for closed-loop
Bode response.

Status Pane
The Status pane is located at the bottom of the Graphical Tuning window.
It displays the most recent action you have performed, occasionally provides
advice on how to use the window, and tracks key parameters when moving
objects in the design views.
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LTI Viewer for SISO Design Task Design Requirements

In this section...

“Overview of LTI Viewer Design Requirements” on page 13-79

“Available Design Requirements in the LTI Viewer” on page 13-79

“Example: Time Domain Requirement” on page 13-80

Overview of LTI Viewer Design Requirements
You can use the LTI Viewer for SISO Design Tasks to specify both time and
frequency domain requirements in analysis plots. Adding and editing design
requirements is similar to those illustrated in the Graphical Tuning window.

Note To add design requirements, you must open the LTI Viewer from the
SISO Design Task in the Control and Estimation Tools Manager. Design
requirements are not available from an LTI Viewer that is opened using the
ltiview command.

For row or column arrays of LTI models, the design requirements are for the
nominal model that you are designing the controller for. You can analyze
the effects of this controller on the remaining models. See “Control Design
Analysis of Multiple Models” in the Getting Started Guide.

Available Design Requirements in the LTI Viewer
The design requirements for Bode, Root Locus, and Nichols plots can be
applied to both graphical tuning windows and the LTI viewer. See “Design
Requirements” on page 13-63 for information on graphical tuning design
requirements.

You can also specify the following design requirements for both step and
impulse response plots:

• Upper time response bounds— Creates an upper amplitude bound for
a specified time duration.
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• Lower time response bounds — Creates a lower amplitude bound for
a specified time duration.

If you are using a step response plot, you can also specify the following design
requirement:

• Step response bounds — Creates a group of upper and lower time
response bounds, in the shape of a step response envelope, to encompass
your specified design requirement parameters.

Example: Time Domain Requirement
This example shows you how to create a lower bound time response design
requirement.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(Gservo)

2 From the Analysis Plot pane, select step response. See “Analysis Plots” on
page 13-23 if you are unfamiliar with this task.

3 Select Design Requirements->New from the LTI Viewer right-click menu.

4 Select Lower time response bound from the Design requirements menu.

5 Set Time from 0.1 to 0.5 s.

6 Set Amplitude from 0 to 0.8. Your New Design Requirement window
should look like this.
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7 Click OK. This adds the design requirement. Your step response should
look like this.
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Basic LTI Viewer Tasks
LTI Viewer is a graphical user interface (GUI) that simplifies the analysis of
linear, time-invariant systems. You use the LTI Viewer to view and compare
the response plots of SISO and MIMO systems, or of several linear models
at the same time. You can generate time and frequency response plots to
inspect key response parameters, such as rise time, maximum overshoot,
and stability margins.

The easiest way to work with the LTI Viewer is to use the right-click menus.
For example, type

load ltiexamples
ltiview(sys_dc)

at the MATLAB prompt. The default plot is a step response.
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The LTI Viewer can display up to seven different plot types simultaneously,
including step, impulse, Bode (magnitude and phase or magnitude only),
Nyquist, Nichols, sigma, pole/zero, and I/O pole/zero.

See ltiview for help on the function that opens an LTI Viewer. For examples
of how to use the LTI Viewer, see Analyzing Models in the Control System
Toolbox Getting Started Guide.
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Using the Right-Click Menu in the LTI Viewer

In this section...

“Overview of the Right-Click Menu” on page 14-4

“Setting Characteristics of Response Plots” on page 14-4

“Adding Design Requirements” on page 14-9

Overview of the Right-Click Menu
The quickest way to manipulate views in the LTI Viewer is use the right-click
menu. You can access several LTI Viewer controls and options, including:

• Plot Type — Changes the plot type

• Systems— Selects or deselects any of the models loaded in the LTI Viewer

• Characteristics— Displays key response characteristics and parameters

• Grid — Adds grids to your plot

• Properties — Opens the Property Editor, where you can customize
plot attributes

• Design Requirements — Opens the New Design Requirement window
for adding step response design requirements to your plot (available only
for LTI Viewers linked to the Graphical Tuning window of the SISO Design
Tool)

In addition to right-click menus, all response plots include data markers.
These allow you to scan the plot data, identify key data, and determine the
source system for a given plot.

Setting Characteristics of Response Plots
The Characteristics menu changes for each plot response type.
Characteristics refers to response plot information, such as peak response, or,
in some cases, rise time and settling time.

The next sections describe the menu items for each of the eight plot types.
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Step Response
Step plots the model’s response to a step input.

You can display the following information in the step response:

• Peak Response — The largest deviation from the steady-state value of
the step response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

• Rise Time — The time require for the step response to rise from 10% to
90% of its final value

• Steady-State — The final value for the step response

Note You can change the definitions of settling time and rise time using
the Characteristics pane of the Control System Toolbox editor, the LTI
Viewer editor, or the Property editor.

Impulse Response
Impulse Response plots the model’s response to an impulse.

The LTI Viewer can display the following information in the impulse response:
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• Peak Response— The maximum positive deviation from the steady-state
value of the impulse response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The LTI Viewer can display the following information in the Bode diagram:

• Peak Response— The maximum value of the Bode magnitude plot over
the specified region

• Stability Margins (Minimum Crossing) — The minimum phase and
gain margins. The gain margin is defined to the gain (in dB) when the
phase first crosses -180°. The phase margin is the distance, in degrees, of
the phase from -180° when the gain magnitude is 0 dB.

• Stability Margins (All Crossings)— Display all stability margins

Bode Magnitude

Bode Magnitude plots the Bode magnitude diagram for the model.

The LTI Viewer can display the following information in the Bode magnitude
diagram:
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• Peak Response, which is the maximum value of the Bode magnitude in
decibels (dB), over the specified range of the diagram.

• Stability (Minimum Crossing)— The minimum gain margins. The gain
margin is defined to the gain (in dB) when the phase first crosses -180°.

• Stability (All Crossings)— Display all gain stability margins

Nyquist Diagrams

Nyquist plots the Nyquist diagram for the model.

The LTI Viewer can display the following types of information in the Nyquist
diagram:

• Peak Response— The maximum value of the Nyquist diagram over the
specified region

• Stability (Minimum Crossing)— The minimum gain and phase margins
for the Nyquist diagram. The gain margin is the distance from the origin to
the phase crossover of the Nyquist curve. The phase crossover is where the
curve meets the real axis. The phase margin is the angle subtended by the
real axis and the gain crossover on the circle of radius 1.

• Stability (All Crossings)— Display all gain stability margins

Nichols Charts
Nichols plots the Nichols Chart for the model.
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The LTI Viewer can display the following types of information in the Nichols
chart:

• Peak Response— The maximum value of the Nichols chart in the plotted
region.

• Stability (Minimum Crossing)— The minimum gain and phase margins
for the Nichols chart.

• Stability (All Crossings)— Display all gain stability margins

Singular Values

Singular Values plots the singular values for the model.

The LTI Viewer can display the Peak Response, which is the largest
magnitude of the Singular Values curve over the plotted region.

Pole/Zero and I/O Pole/Zero
Pole/Zero plots the poles and zeros of the model with ‘x’ for poles and ‘o’ for
zeros. I/O Pole/Zero plots the poles and zeros of I/O pairs.

There are no Characteristics available for pole-zero plots.
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Adding Design Requirements
If you open an LTI Viewer for the Graphical Tuning window, you have plots
linked to your compensator design. In this environment, the LTI Viewer
provides access to design requirements, a set of graphical tools for creating
constraints in your design plots.

In addition to all the design requirements available in the Graphical Tuning
window, the LTI Viewer has the step response design requirements described
in “Choosing Step Response Specifications” on page 14-9.

For more information on adding design requirements to LTI Viewer plots, see
“LTI Viewer for SISO Design Task Design Requirements” on page 13-79.

Note Design requirements are not available from an LTI Viewer that is
opened using the ltiview command.

Choosing Step Response Specifications
To specify step response characteristics select Design Requirements > New
in the right-click menu. This action opens the New Design Requirements
editor. Select step response bounds from the Design requirement type
pull down menu to display the step response specifications as shown below.
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The top three options specify the details of the step input:

• Initial value: input level before the step occurs. This option is grayed out
because LTI systems always have intial value equal to 0.

• Step time: time at which the step takes place. This option is grayed out
since LTI systems always have an initial time equal to 0.

• Final value: input level after the step occurs

The remaining options specify the characteristics of the response signal. Each
of the step response characteristics is described in the figure below.
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• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined as the
final step value plus or minus the specified percentage of the final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can undershoot
the initial value. This amount is specified as a percentage of the step’s
range. The step’s range is the difference between the final and initial
values.

Enter values for the response specifications in the Design Requirements
editor, based on the requirements of your model, and then click OK. The
constraint edges will now reflect the constraints specified.
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Importing, Exporting, and Deleting Models in the LTI
Viewer

In this section...

“Importing Models” on page 14-12

“Exporting Models” on page 14-13

“Deleting Models” on page 14-14

Importing Models
To import models into the LTI Viewer, select Import under the Edit menu.
This opens the LTI Browser, shown below.

Use the LTI Browser to import LTI models into or from the LTI Viewer
workspace.

To import a model:

• Click on the desired model in the LTI Browser List. To perform multiple
selections:

- Hold the Control key and click on nonadjacent models.

- Hold the Shift key while clicking to select multiple adjacent models.
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• Click the OK or Apply Button

Note that the LTI Browser lists only the LTI models in the MATLAB
workspace.

Alternatively, you can directly import a model into the LTI Viewer using the
ltiview function, as in

ltiview({'step', 'bode'}, modelname)

See the ltiview function for more information.

Exporting Models
Use Export in the File menu to open the LTI Viewer Export window,
shown below.

The LTI Viewer Export window lists all the models with responses currently
displayed in your LTI Viewer. You can export models back to the MATLAB
workspace or to disk.

To export single or multiple models, follow the steps described in the importing
models section above. If you choose Export to Disk, this window opens.
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Choose a name for your model(s) and click Save. Your models are stored in
a MAT-file.

Deleting Models
Select Edit->Delete Systems to open the LTI Viewer Delete window.
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To delete a model:

• Click on the desired model in the Model list. To perform multiple selections:

1 Click and drag over several variables in the list.

2 Hold the Control key and click on individual variables.

3 Hold the Shift key while clicking, to select a range.

Click the Delete button.
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Selecting Response Types

In this section...

“Methods for Selecting Response Types” on page 14-16

“Right Click Menu: Plot Type” on page 14-16

“Plot Configurations Window” on page 14-16

“Line Styles Editor” on page 14-18

Methods for Selecting Response Types
There are two methods for selecting response plots in the LTI Viewer:

• Selecting Plot Type from the right-click menus

• Opening the Plot Configurations window

Right Click Menu: Plot Type
If you have a plot open in the LTI Viewer, you can switch to any other
response plot available by selecting Plot Type from the right click menu.

To change the response plot, select the new plot type from the Plot Type
submenu. The LTI Viewer automatically displays the new response plot.

Plot Configurations Window
The Plot Type feature of the right-click menu works on existing plots, but
you can also add plots to an LTI Viewer by using the Plot Configurations
window. By default, the LTI Viewer opens with a closed-loop step response.
To reconfigure an open viewer, select Plot Configuration in the Edit menu.
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Use the radio buttons to select the number of plots you want displayed in your
LTI Viewer. For each plot, select a response type from the menus located on
the right-hand side of the window.

It’s possible to configure a single LTI Viewer to contain up to six response
plots.
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Available response plots include: step, impulse, Bode (magnitude and phase,
or magnitude only), Nyquist, Nichols, sigma, pole/zero maps, and I/O pole/zero
maps.

Line Styles Editor
Select Edit-> Line Styles to open the Line Styles editor.

The Line Styles editor is particularly useful when you have multiple systems
imported. You can use it change line colors, add and rearrange markers, and
alter line styes (solid, dashed, and so on).

You can use the Linestyle Preferences window to customize the appearance
of the response plots by specifying:

• The line property used to distinguish different systems, inputs, or outputs

• The order in which these line properties are applied

Each LTI Viewer has its own Linestyle Preferences window.
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Setting Preferences
You can use the "Distinguish by" matrix (the top half of the window) to specify
the line property that will vary throughout the response plots. You can group
multiple plot curves by systems, inputs, outputs, or channels (individual
input/output relationships). Note that the Line Styles editor uses radio
buttons, which means that you can only assign one property setting for each
grouping (system, input, etc.).

Ordering Properties
The Order field allows you to change the default property order used when
applying the different line properties. You can reorder the colors, markers,
and linestyles (e.g., solid or dashed).

To change any of the property orders, click the up or down arrow button to
the left of the associated property list to move the selected property up or
down in the list.
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Analyzing MIMO Models

In this section...

“Overview of Analyzing MIMO Models” on page 14-20

“Array Selector” on page 14-21

“I/O Grouping for MIMO Models” on page 14-23

“Selecting I/O Pairs” on page 14-24

Overview of Analyzing MIMO Models
If you import a MIMO system, or an LTI array containing multiple linear
models, you can use special features of the right-click menu to group the
response plots by input/output (I/O) pairs or select individual plots for display.
For example, if you randomly generate a 3-input, 3-output MIMO system,

sys_mimo=rss(3,3,3);

and open an LTI Viewer,

ltiview(sys_mimo);

the default is an unwrapped set of 9 plots, one from each input to each output.
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Array Selector
If you import an LTI array into your LTI Viewer, Array Selector appears
as an option in the right-click menu. Selecting this option opens theModel
Selector for LTI Arrays, shown below.
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You can use this window to include or exclude models within the LTI array
using various criteria. The following subsections discuss the features in turn.

Arrays
Select which LTI array for applying model selection options by using the
Arrays pull-down list.

Selection Criteria
There are two selection criteria. The default, Index into Dimensions, allows
you to include or exclude specified indices of the LTI Array. Select systems
from the Selection Criteria Setup and specify whether to show or hide the
systems using the pull-down menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options
causes the Model Selector to reconfigure. The reconfigured window is shown
below.

Use this option to select systems for inclusion or exclusion in your LTI Viewer
based on their time response characteristics. The panel directly above the
buttons describes how to set the inclusion or exclusion criteria based on
which selection criteria you select from the reconfigured Selection Criteria
Setup panel.
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I/O Grouping for MIMO Models
You can group this by inputs, by outputs, or both by selecting I/O Grouping
and then Inputs, Outputs, or All, respectively, from the right-click menu.

For example, if you select Outputs, the LTI Viewer reconfigures into 3 plots,
one for each input.

Selecting None returns to the default configuration, where all I/O pairs are
displayed individually.
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Selecting I/O Pairs
Another way to organize MIMO system information is to choose I/O Selector
from the right-click menu, which opens the I/O Selector window.

This window automatically configures to the number of I/O pairs in your
MIMO system. You can select:

• Any individual plot (only one at a time) by clicking on a button

• Any row or column by clicking on Y(*) or U(*)

• All of the plots by clicking [all]

Using these options, you can inspect individual I/O pairs, or look at particular
I/O channels in detail.
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Customizing the LTI Viewer

In this section...

“Overview of Customizing the LTI Viewer” on page 14-25

“LTI Viewer Preferences Editor” on page 14-25

Overview of Customizing the LTI Viewer
The LTI Viewer has a tool preferences editor, which allows you to set
default characteristics for specific instances of LTI Viewers. If you open a
new instance of either, each defaults to the characteristics specified in the
Toolbox Preferences editor.

LTI Viewer Preferences Editor
Select Viewer Preferences in the Edit menu of the LTI Viewer to open
the LTI Viewer Preferences editor. This figure shows the editor open to
its first pane.

The LTI Viewer Preferences editor contains four panes:

• Units--Convert between various units, including rad/sec and Hertz

14-25



14 LTI Viewer

• Style--Customize grids, fonts, and colors

• Characteristics--Specify response plot characteristics, such as settling time
tolerance

• Parameters--Set time and frequency ranges, stop times, and time step size

If you want to customize the settings for all instances of LTI Viewers, see the
Toolbox Preferences editor.
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IndexA
addition of LTI models 5-15

scalar 5-16
adjoint.. See pertransposition
append 5-20 to 5-21
array selector for LTI Viewer 14-21
arrays. See Model arrays 2-58

C
classical control 11-2 11-19
closed loop.. See feedback
concatenation, model

horizontal 5-21
state-space model order, effects on 5-13
vertical 5-21

connection
feedback 11-11
parallel 5-16 11-54
series 5-17 11-14

continuous-time 6-2
conversion, model

automatic 1-24
between model types 1-24 5-4
continuous to discrete (c2d) 5-25
discrete to continuous (d2c) 5-25

with negative real poles 5-26
FRD model, to 1-24
resampling 5-37
SS model, to 1-24
state-space, to 1-25
TF model, to 1-24
ZPK model, to 1-24

covariance
error 11-56 11-61

creating model arrays 2-58
customizing plots 10-2
customizing subplots 10-18

D
d2d 5-37
delays

discretization 5-27
Pade approximation 2-30

deletion
parts of LTI models 5-13

denominator
specification 1-11
value 5-7

descriptor systems.. See state-space models,
descriptor

design
classical 11-2 11-19
Kalman estimator 11-35 11-49 11-57
LQG 11-30
regulators 11-30
robustness 11-27
root locus 11-8 11-23

desired responses
step responses 14-9

discrete-time models 6-2
control design 11-19
Kalman estimator 11-50
resampling 5-37
upsampling 5-37

discretization 5-25 11-20
delay systems 5-27
first-order hold 5-27
matched poles/zeros 5-35
Tustin method 5-32
zero-order hold 5-25

dual.. See transposition

E
error covariance 11-56 11-61
extraction

LTI models, in 5-8
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F
feedback 11-11
filtering.. See Kalman estimator
first-order hold (FOH) 5-27

with delays 5-27
FRD (frequency response data) objects 1-14

conversion to 1-24
frequencies

indexing by 5-11
referencing by 5-11

frequency response 1-15

G
gain margins 11-27
Graphical design window 13-2
Graphical Tuning Preferences Editor 9-9
group. See I/O groups 5-12

I
I/O

concatenation 5-20
dimensions 6-2
groups

referencing models by group name 5-12
names

conflicts, naming 4-16 5-4
referencing models by 5-12

relation 5-8
inheritance 5-3
input

number of inputs 6-2
InputGroup 4-16 5-4

conflicts, naming 4-16 5-4
See also I/O groups

InputName 4-16 5-4
conflicts, naming 4-16 5-4
See also I/O names

inversion

model 5-18

K
Kalman

filtering 11-49
Kalman estimator

continuous 11-35
discrete 11-50
time-varying 11-57

L
LQG (linear quadratic-gaussian) method

continuous LQ regulator 11-35
cost function 11-35
design 11-30 11-45
LQ-optimal gain 11-35
regulator 11-30

LTI arrays
conversion, model.. See conversion

LTI models
addition 5-15

scalar 5-16
building 5-20
characteristics 6-2
concatenation

effects on model order 5-13
horizontal 5-21
vertical 5-21

continuous 6-2
conversion 1-24 5-4 5-26

continuous/discrete 5-25
See also conversion, model

discrete 6-2
discretization, matched poles/zeros 5-35
empty 6-2
functions, analysis 6-4
I/O group or channel name, referencing

by 5-12
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interconnection functions 5-20
inversion 5-18
model data, accessing 5-6
modifying 5-8
multiplication 5-17
operations 5-1 5-5

precedence rules 5-3
See also operations

proper transfer function 6-2
resizing 5-13
subsystem, modifying 5-13
subtraction 5-16
type 6-2

LTI properties
I/O groups.. See I/O, groups
I/O names.. See I/O, names
inheritance 5-3
sample time 4-16 5-4
variable property 4-16 5-4

LTI Viewer
array selector 14-21
configuring plots 14-16
customization 14-25
I/O grouping 14-23
importing/exporting models 14-12
MIMO models 14-20
overview 14-2
right-click menu 14-4
selecting I/O pairs 14-24
selecting response types 14-16
SISO Design Task 13-2

LTI Viewer Preferences Editor 9-3

M
map, I/O 5-8
margins, gain and phase 11-27
MIMO 5-21
model arrays

creating model arrays 2-58

Model arrays 2-58
model building 5-20

feedback connection 11-11
parallel connection 5-16 11-54
series connection 5-17 11-14

model dynamics, function list 6-4
modeling.. See model building
multiplication 5-17

scalar 5-18

N
numerator

specification 1-11
value 5-7

O
operations on LTI models

addition 5-15
append 5-21
arithmetic 5-15
concatenation 5-13 5-21
extracting a subsystem 5-5
inversion 5-18
multiplication 5-17
pertransposition 5-19
precedence 5-3
resizing 5-13
subsystem, extraction 5-8
subtraction 5-16
transposition 5-18

output
number of outputs 6-2

OutputGroup
group names, conflicts 4-16 5-4
See also I/O, groups 4-16 5-4

OutputName
conflicts, naming 4-16 5-4
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P
Pade approximation (pade) 2-30
parallel connection 5-16 11-54
pertransposition 5-19
phase margins 11-27
plot customization 10-2
Plot Tools 10-19
precedence rules 5-3
proper transfer function 6-2
properties

sample time 4-16 5-4
variable 4-16 5-4

Property Editor 10-3

R
realizations 6-7
regulation 11-30
resampling 5-37
response, I/O 5-8
robustness 11-27
root locus 11-23

design 11-8 11-23
See also Root Locus Design GUI

S
sample time 4-16 5-4

accessing 5-6
resampling 5-37
upsampling 5-37

scaling 12-2
series connection 5-17 11-14
SISO 6-2
SISO Design Task in the Control and Estimation

Tools Manager 13-2
SISO Design Tool 13-2

customizing plots 10-48
root locus right-click menu 13-57

SS models 5-19
state 1-13 to 1-14
state-space models

conversion to 1-24
See also conversion 1-24

descriptor 1-14 5-6
matrices 1-13
model data 1-13
quick data retrieval 5-6
realizations 6-7
scaling 12-2
specification 1-13

step responses
specifications 14-9

subplot customization 10-18
subsystem 5-5 5-8
subsystem operations on LTI models

subsystem, modifying 5-13
subtraction 5-16

T
tfdata

output, form of 5-6
time-varying Kalman filter 11-57
Toolbox Preferences Editor 8-2
transfer functions

conversion to 1-24
denominator 1-11
MIMO 5-21
numerator 1-11
quick data retrieval 5-6
specification 1-11
variable property 4-16 5-4

transposition 5-18
triangle approximation 5-27
Tustin approximation 5-32

with frequency prewarping 5-33
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V
variable property 4-16 5-4

Z
zero-order hold (ZOH) 5-25 11-20

with delays 5-27

zero-pole-gain (ZPK) models
conversion to 1-24
MIMO 5-21
quick data retrieval 5-6

zpkdata
output, form of 5-6
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